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tive WSD (IWSD)

m R

Iter

Q)

IWSD Scoring Function:

STATISTICAL CANTESTHOR

Which parameter contributes more?
*  The Accuracy of IWSD has been constant in spite of several
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o Comparison between accuracies of IWSD and MFS
o Ablation Test on IWSD Parameters
o Suitable linear combination parameter (a)test:

x>

S =axargmaxéV. + (1— « W.V.V.
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Corpus Statistics (news)

Polysemous | Monosemous |Wordnet Corpus
words words Polysemy | Polysemy

Noun 72225 61632 1.82

Verb 26436 4372 4.47 3.00

Adj I 15462 ‘ 30122 ‘ 2.68 ‘ 2.03 |

Adv 12907 10658 2.52 2.11

Overall | 127030| 106834 | 3.13 l 2.02 l
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MFS v/s IWSD

- Precision Recall F-Score

79.04

*]WSD is very close to MFS output
*This indicates predominance of the : 79 21

P(S|W) parameter
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Precision | Recall | F-Score

0 ‘ 79.61%  78.62% 79.11%

P(SI\AN 20/, 8.84% 59.21%

58% 79.07%
Clear indication that the P(S[|W) statistic is the

prime parameter for IWSD 0 A
*Knowledge based parameters have an accuracy 51%  79.01%
of 60% as compared to 80% for P(S/W)

62%‘ 79.11% |
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59.59% 58.84% 59.21

0.00001 79.48% 78.49% 78.98

0.0001 79.50%

0.001 79.50%

*P(S| W) parameter has highest predominance r{*}k}

for IWSD
*The predominance is so high that even for

alpha = 0.00001, 80% accuracy is reached 9.11

0.75 79.61% 78.62% 79.11

1 79.59% 78.60% 79.1
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ceneral Belief
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FOR HUMANS

Reduces Cognitive
Load

Context
makes it
easier !!

Inclusion of
Context

Without
Context

In our research CONTEXT means the
Neighboring words around the Target word

With Context
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FOR MACHINES State-of-the-Art WSD Algorithms are
Supervised

Knowledge Based Algorithms have Low
Accuracies

Sense Annotated Corpora

P(Sense [ Word)
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Word Sense Disambiguation

Computationally identifyi words in a
CONTEXT

Thelows into th Target word : sea

Context word : river

WSD is inspired by the human sense
disambiguation technique

definition WSD as an . system, apes the human

[ |
sense disambiguation technique - STRONG Al

Over the years, knowledge based WSD algorithms, which follow this

technique, have reported low accuracies, which strongly indicates

\that machines fail to capture senses, in the human way

obal"WordNet Conterence



Supervised algorithms do not use human annotation

techniques, yet deliver highest accuracies
\

This made us raise a question on the foundation of the

WSD task - The relevance of its definition
\ 9

L

SD from the perspe« ( WEAIK AL We explored the
|

Y OI ITldIl and machine annotation tec ANnIques

WEAK Al

L )
: Machines should use | Machines should use
context as humans ‘ context in some way

! do, for WSD | \ for WSD
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Conversely, we also wanted to see if humans can

annotate the way machines do i.e., without context
N\

In our research, machine annotation refers to the state-of-the-

art WSD algorithms
\

Through our research we intend to answer the
following questions fundamental to sense annotation:

rd

Can humans annotate without
context as machines do?

/ \\

Do machines need context for sense
disambiguation as humans do?

10/01/2012 6th Global WordNet Conference 17



Our Claim

Humans and machines both need Context for

.annotation, but use context differently

Tagging without context is cognitively challenging for
humans and highly erroneous

Humans cannot annotate the way machines do

3
Machines only need good sense statistics for annotation
and do not need context the way humans do

Machines get the contextual evidence factored in the P(S|W)
measure, from Human Context Sensitive corpora tagged using

context.

N

Machines conform to the principle of WEAK Al with
respect to sense annotation
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Corpora and
Annotation Scenarios

Context Sensitive Scenario

* For Humans: Specific domains (TOURISM and HEALTH) and
generic domain (NEWS) were tagged using context

 For Machines: Trained and tested on context sensitive
corpora

Context Agnostic Scenario

» For Humans: Specific domains (TOURISM and HEALTH) and
generic domain (NEWS) were tagged without using context

* The corpora used in this case consisted of a list of words,
obtained from the corpora used in the context sensitive
scenario

* For Machines: Trained and tested on context agnostic
corpora



Annatatian Genres

Context
\
Annotator Agnostic Sensitive

Human

Machine
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Why Annotation Genres?

If Humans can annotate without context like

HCA machines HCS (Gold)

IX33U0I YM
saulyoew Jo aduew.lo}iad

MCA

<
&’

If Machines need Context
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Similarity Measures

Jaccard’s Similarity Coefficient:

_|AMNB]

J(A,B) =
| AU B | where, Aand B are annotators

Cohen’s Kappa Coefficient:

Pr(a) — Pr(e)

(A B) = 5o

where, Pr(a) is the relative observed agreement among
annotators, and Pr(e) is the hypothetical probability of chance
agreement

10/01/2012 6th Global WordNet Conference 23
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List of Experiments

To find the prime parameter for human annotation

* Comparison between Human Context Sensitive and
Context Agnostic data

To find if humans can annotate accurately without context
like machines

* Comparison between Human Context Sensitive and
Context Agnostic data

To find the cognitive load for humans associated with
tagging in both the scenarios

- o L

* The time required for annotation was recorded

- The annotators’ views after the tagging process were
also recorded






*Humans need context for annotation

*Context is the prime parameter for
human annotation
*Humans cannot annotate in the way

machines do
0.61
HCS
HEALTH 0.64 045 0.76 0.73 0.61
NEWs  0.57  0.27 0.74 0.26 0.50

v/s
HCA

OVERALL
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Humans need only contextual evidence for annotation

N

Annotation in context agnostic scenarios is cognitively

challenging and erroneous
g
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To find if machine uses context for annotation

\_

e Comparison of machine outputs for context sensitive and
context agnostic scenarios

e Comparison of machine output for context sensitive data with
Gold data

e Comparison of machine output for context agnostic data with
Gold data



MCA
v/s
MCS

CS v/s MCA — e appa
NN A - P AN/ L) | Y el | '/q - A c
statistic
nate ANad OVeE
NOUN ADV VERB OVERALL
TOURISM  0.34 0.13 0.31 0.27
HEALTH' 0.26 ' 0.16 0.30 ' 0.29 0.24 |
NEWS 0.25 0.04 0.24 0.19 0.17

10/01/2012
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IMC

Sv/s

Type of
Experiment

MCS
v/s
MCA

IMIC

coefficient

POS and Overall

OVERALL

A — Jaccard’s Similarity

TOURISM (0.72 @ 056 061 0.74 | 0.68
HEALTH 069 056 0.79 0.69 | 0.67
NEwWS 0.66 040 075 053 | 0.62

10/01/2012~
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*Inter annotator agreement is 80%

*MCS performs at par with humans when

trained on context sensitive data '0S and Overall

I—I\P\JI iiiniviic

OVERALL

TOURISM (.80 0.71 0.8 0.78
HCS ]
v/s  HEALTH (.81 0.80 0.88 0.60 0.81
MCS
NEWS  0.84 0.77 0.86 0.70 0.80

10/01/2012 6th Global WordNet Conference 33



eMachines require good sense statistics for high
accuracy

*Sense statistics gathered from context agnostic nd Overall
corpora is poor

*Good sense statistics comes from context sensitive
corpora annotated using context.

OVERALL

0.69 | 0.61

TourisM | (.65

HCS
v/s HEALTH 0.64
MCA

0.61

NEWS 0.57 0.27 0.74 0.26 0.50

10/01/2012 a6th Glabal\WordNet Conferance - 2




Insights

P(S[W) is the prime parameter for machines
N\

P(S|W) learnt from context sensitive data gives better

accuracy than context agnostic data
\

Accurate P(S[W) is learnt from the corpus which is annotated
using contextual evidence. Thus context sensitivity in machines
is an adaption of Human Context Sensitive annotation.

o

Machine require contextual information. Unlike humans,
machines use context through P(S| W) parameter, hence

\machines conform to the principle of WEAK Al







Tourism: Ontological Categories — Jaccard’s
coefficient

TOURISM
Ontological

Category Count | MCS v/s MCA HCS v/s MCS HCS v/s HCA'
Verb of State 972 0.43 0.95 0.33

acion | 863 | 025 | 083 021 |
Anatomical 798 0.35 0.89 0.34

Relational 721 033 075 | 018

10/01/2012
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alth: Ontolagical Categaries —
Jaccard’s coefficient

Ontological HEACTH

Cateqor
Jory Count  MCS v/s MCA HCS vis MCS HCS v/s HCA

7(3 JQ.J

sodilyaction 1198 0.06 095  0.89
Quatity 1188 001 090 0.6
Qualtative 1118 022  0.86  0.17
numeral 1000 | 042 0.99 043

10/01/2012 6th Global WordNet Conference 38



Ontological NEWS

Category  [JNPRNN MCS vis MCA HCS vis MCS HCS vis HCA
2209 067 092 073
1829 = 047 090 070

Artifact | 1796 0.27 0.85 0.61
Bodnyaction| 1582 | 0.20 | 0.83 | 0.55 |

Physical Place

Person

10/01/2012 6th Global WordNet Conference 39



HCA 0.30 HCS (Gold)
o
S
o2®
MCA 0.35 MCS
TOURISM
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Humans need Context as the primary parameter for

Annotation
\ 8

Tagging without context is erroneous for humans. Humans

cannot annotate like machines (i.e., without context)
\

Machines need good sense statistics as the primary parameter

for annotation
\

Machines require contextual information, but that is factored

into the P(S/W) parameter, unlike humans’ use of context
\

10/01/2012 6th Global WordNet Conference




Conclusion

Humans and machines both need Context for
.annotation, but use context differently

Tagging without context is cognitively challenging for

humans and highly erroneous
\

Humans cannot annotate the way machines do

\

Machines only need good sense statistics for annctziion

\

Machines get the contextual evidence factored in the P(S|W)
measure, from Human Context Sensitive corpora tagged vsing
context.

Word Sense Disambiguation is successful as a WEAK Al
system.
S
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For Humans: A deeper insight into the exact cognitive

processes which are involved during the annotation

process could further leverage the study between man
\and machine sense annotation processes.

Currently work is going on in this direction, by using an
eye-tracking device to trace the exact use of context in

human annotation
N\

For Machines: Using better knowledge based
parameters for IWSD could further enhance its
accuracy.

$0/01/2012. 6th Global WordNet Caonference
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