New Vistas to Study Bhartṛhari: Cognitive Natural Language Processing (NLP)

Jayashree Aanand Gajjam¹, Diptesh Kanojia², Malhar Kulkarni¹

 $^{1}\mathrm{Department}$ of Humanities and Social Sciences, IIT Bombay $^{2}\mathrm{IITB} ext{-}\mathrm{Monash}$ Research Institute, India

 17^{th} World Sanskrit Conference, Vancouver, Canada, 9-13 July 2018

Table of Contents

- 1 Introduction
 - 1.1 Bhartṛhari's 'Vākyapadīya'
 - 1.2 Eye-Tracking
- Our Work
 - 2.1 Hypothesis Formulation
 - 2.2 Experiment Setup
 - 2.3 Results and Analysis
- 3 Limitations and Future Work
- 4 Conclusion

Table of Contents

- 1 Introduction
 - 1.1 Bhartṛhari's 'Vākyapadīya'
 - 1.2 Eye-Tracking
- Our Work
 - 2.1 Hypothesis Formulation
 - 2.2 Experiment Setup
 - 2.3 Results and Analysis
- 3 Limitations and Future Work
- 4 Conclusion

1.1 Bhartṛhari's 'Vākyapadīya'

Bhartṛhari: A Grammarian-philosopher, 5^{th} Century CE 'Vākyapadīya'- Vākyakāṇḍa

आख्यातशब्दः सङ्घातो जातिः सङ्घातवर्तिनी । एकोऽनवयवः शब्दः क्रमो बुद्ध्यनुसंहृतिः ॥१॥ पदमाद्यं पृथक्सर्वं पदं साकाङ्क्षमित्यपि । वाक्यं प्रति मतिर्भिन्ना बहुधा न्यायवादिनाम् ॥२॥

Figure: Sentence-definitions, VP.II.1-2

1.1 Bhartṛhari's 'Vākyapadīya'

First definition: Ākhyātaśabdaḥ

Explanation:

- Bhartṛhari , VP.II.326
 "ākhyātaśade niyataṃ sādhanaṃ yatra gamyate | tadapyekaṃ samāptārthaṃ vākyamityabhidhīyate ||"
- 2 Ambākartrī by Pt. Raghunatha Sarma pidhehīti... atra dvāramiti karmākṣepāt paripūrṇārthatve 'dvāraṃ pidhehi' iti vākyam bhavatyeva |
- 3 Puṇyarāja 'kriyā vākyārthah'

Why Eye-Tracking?

Information passes through the eyes...

Why Eye-Tracking?

Information passes through the eyes...

Various researches have shown that:

Textual nuances affect gaze. (Just and Carpenter, 1980; Rayner, 1998)

Eye-movements can be used to infer cognitive processes. (Starr, 2011)

Mind processes the word eye fixates on. (De Groot, 2011)

Eye is the window into the brain. (Majaranta, 2014)

Eye-movement is poised between perception and cognition. (Mishra, 2016)

Why Eye-Tracking?

Information passes through the eyes...

Various researches have shown that:

Textual nuances affect gaze. (Just and Carpenter, 1980; Rayner, 1998)

Eye-movements can be used to infer cognitive processes. (Starr, 2011)

Mind processes the word eye fixates on. (De Groot, 2011)

Eye is the window into the brain. (Majaranta, 2014)

Eye-movement is poised between perception and cognition. (Mishra, 2016)

■ Feasibility: Inexpensive eye-tracking hardware available and integrated with handheld gadgets. (http://www.sencogi.com) (Mishra, 2016)

Features:

Various efforts done by readers during reading:

- Progression/ Saccades
- Back-tracking/ Regression
- Fixation
- Skip etc.

Table of Contents

- Introduction
 - 1.1 Bhartrhari's 'Vākyapadīya'
 - 1.2 Eye-Tracking
- Our Work
 - 2.1 Hypothesis Formulation
 - 2.2 Experiment Setup
 - 2.3 Results and Analysis
- 3 Limitations and Future Work
- 4 Conclusion

2.1 Hypothesis Formulation

Hypothesis:

When lexical complexity is minimized in the texts, Sanskrit readers tend to rely more on *the verbs* for the sentence comprehension.

2.1 Hypothesis Formulation

Hypothesis:

When lexical complexity is minimized in the texts, Sanskrit readers tend to rely more on *the verbs* for the sentence comprehension.

Research Question 1:

Do the Sanskrit readers spend more time on, look back more at and rarely skip <u>the verbs</u> than the non-verb words during sentence-comprehension?

2.1 Hypothesis Formulation

Hypothesis:

When lexical complexity is minimized in the texts, Sanskrit readers tend to rely more on the verbs for the sentence comprehension.

Research Question 1:

Do the Sanskrit readers spend more time on, look back more at and rarely skip the verbs than the non-verb words during sentence-comprehension?

Research Question 2:

Are purely nominal sentences in Sanskrit less comprehensible or less meaningful than the sentences having verb/s?

(i) Dataset Description

Step 1

Dataset Collection- 20 Documents in total, Lexical Complexity Minimization

Step 2

Dataset Modification- Removal and replacements^a, Document Type A, B, C.

^aThis type of modification in the data is motivated by the research conducted by Marta, 1980.

Step 3

Dataset Finalization- Shuffled documents, 2 Questions, Dataset 1, 2 and 3

(i) Dataset Description

(ii) Participant Description

20 Participants in total Adult age-group Background in Sanskrit Neurologically healthy Normal or corrected vision Multilingual

(iii) Feature Description

1. Dwell Time

Amount of time spent on AOI^a.

2. Regression Count

Total number of regressions on AOI.

3. Skip Count

Total number of times an AOI was skipped.

Fixation Count

Total number of fixations.

5. Run Count

Total number of times an AIO was looked at.

^aAOI= Area of Interest, here, **the verb** in the sentence.

(iv) Methodology

- Experiment Building Controlled experiment
- Experiment Conducting
 Instruction
 Sample Documents
 Self-paced and silent reading
 One document at a time
 Multiple-choice question
 Short breaks in between

Dwell Time Percentage on Verbs vs. Non-Verbs in all three Datasets by all participants

Regression Count on the Verbs vs. Non-Verbs in all three Datasets by all participants

Figure: Skip Count on Verbs vs. Non-Verbs in all three Datasets by all participants

Fixation Count on Verbs vs. Non-Verbs in all three Datasets by all participants

Run Count on the Verbs vs. Non-Verbs in all three Datasets by all participants

Evaluation of the Work

Meaningfulness of the texts

Figure: Meaninglessness of Poetry and Prose texts (A vs. B Vs. C) as reported by Participants

Evaluation of the Work

Inter-Annotator Agreement and Accuracy on both questions by all participants

Overall Agreement: Q1- 0.45 to 0.95 and Q2- 0.5 to 0.95; Accuracy: 0.6 to 1

	Q1	Q2	
	IAA	IAA	ACC
P1	0.7	0.5	0.6
P2	0.8	0.9	0.95
P3	0.8	0.9	0.9
P4	0.95	0.95	0.95
P5	0.45	0.85	0.9
P6	0.9	0.55	0.6
P7	0.85	0.7	0.8

	Q1	Q2	
	IAA	IAA	ACC
P8	0.85	0.9	0.95
P9	0.75	0.6	0.75
P10	0.75	0.8	1
P11	0.5	0.75	0.85
P12	0.7	0.8	0.85
P13	0.85	0.95	1

	Q1	Q2	
	IAA	IAA	ACC
P14	0.8	0.8	0.75
P15	0.65	0.65	0.75
P16	0.85	0.9	0.95
P17	0.9	0.8	0.7
P18	0.75	0.85	0.85
P19	0.5	0.9	0.9
P20	0.8	0.7	0.8

Table: Dataset 1

Table: Dataset 2

Table: Dataset 3

Table of Contents

- 1 Introduction
 - 1.1 Bhartrhari's 'Vākyapadīya'
 - 1.2 Eye-Tracking
- Our Work
 - 2.1 Hypothesis Formulation
 - 2.2 Experiment Setup
 - 2.3 Results and Analysis
- 3 Limitations and Future Work
- 4 Conclusion

Limitations

Technical
 Only Written-language Cognition
 Under the controlled environment

Limitations

- Technical
 Only Written-language Cognition
 Under the controlled environment
- Human-related
 Literate population
 Visually impaired population
 Other

Limitations

Technical

Only Written-language Cognition
Under the controlled environment

Human-related

Literate population
Visually impaired population
Other

Methodology-related

Dataset

Participants

Analysis

Future Work

- <u>Author</u>: Bhartṛhari , Kauṇḍabhaṭṭa...
- <u>Definition</u>: Definition 1, 2...
- Technique: Eye-Tracking , EEG, fMRI, Off-line methods...
- Language: Sanskrit , First Language...
- <u>Purpose</u>: Language Cognition , Computational, WSD, CWI, solutions for people having reading disabilities...
- <u>Methodology</u>: <u>Lexical Complexity Minimization</u>, Single-verb sentences, Large data size, More number of participants, Reading aloud, Different kind of texts, Comparative study etc.

Table of Contents

- 1 Introduction
 - 1.1 Bhartṛhari's 'Vākyapadīya'
 - 1.2 Eye-Tracking
- Our Work
 - 2.1 Hypothesis Formulation
 - 2.2 Experiment Setup
 - 2.3 Results and Analysis
- 3 Limitations and Future Work
- 4 Conclusion

Conclusion

Pilot Study

Verbs in a Sanskrit sentence hold the most prominent position in the semantics of the sentence, without which a sentence seems to be incomplete.

State-of-the-art Study

We uncover this *new avenue* to study Bhartrhari's in a more meaningful way.

The sizable data from these experiments will allow us to extract some *cognitive features* which can be used in various NLP applications.

References

De Groot, A. M. (2011). Language and cognition in bilinguals and multilinguals: An introduction. *Psychology Press*.

Just, M. A. (1980). A theory of reading: From eye fixations to comprehension. *Psychological Review*, 87(4), 329.

Majaranta, P. a. (2014). Eye tracking and eye-based human–computer interaction. *Advances in physiological computing* (pp. 39-65). Springer.

Marta, K. (1980). Reading senseless sentences: brain potentials reflect semantic incongruity. *Science*, 204(4427), (pp. 203-205).

Matthew S Starr and Keith Rayner. (2001). Eye movements during reading: Some current controversies. *Trends in cognitive sciences*, 5(4):156–163.

Mishra, A. a. (2016). Predicting Readers' Sarcasm Understandability by Modeling Gaze Behavior. *AAAI*, (pp. 3747-3753).

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. *Psychological bulletin*, 124(3), 372.

Google Images

Acknowledgements

^{1.} malhar@hss.iitb.ac.in

^{2.} diptesh@cse.iitb.ac.in

^{3.} abhijitmishra.530@gmail.com

^{4.} vasu.aital@gmail.com

Thank you!

Extra Slides...

History of Eye-tracker

Figure: Louis Emile Javal, (1839-1907) Invented Eye-tracker in 1879.

Figure: Edmund Huey, (1870-1913) First Eye-tracker for reading in 1903.

Working of Eye-Tracker:

- Two PCs, Infrared Illuminator, Head and Chin Rest.
- Eye-Calibration Process.

Figure: SR Eyelink 1000 Plus Eye-Tracker

Figure: Monocular Eye-tracking

Figure: 9-Grid Eye-Calibration

Before the Eye-tracking experiment:

Figure: Experiment Building Procedure

Figure: Camera Setup Screen on Host PC

Working of Eye-Tracker:

- Eye-Calibration Process.
- Various efforts during reading are measured.

Figure: Camera Setup Screen- Host PC

Figure: Gaze-text mapping

Figure: Video during reading

Figure: Eye-drifts

Working of Eye-Tracker:

- Eye-Calibration Process.
- Various efforts during reading are measured.

Figure: Eye-calibration Fail Figure: Perfect Eye-calibration

Drift correction procedure of the Eye-movement data:

Figure: Various efforts during reading

Various Efforts during reading- Features:

Saccades (\rightarrow) , Regressions (\triangleright) , Fixations (\bullet) , Skip (\curvearrowright) Blinks...

Figure: Various efforts during reading

Dataset Example

Prose documents: Original, Purely nominal and No-Karta sentences

अस्त्यत्र धरातले वर्धमानं नाम नगरम्। तत्र दन्तिलो नाम नानाभाण्ड-पत्तिः सकलपुर-नायकः प्रतिवसित स्म। तेन पुरकार्यं नृपकार्यं च कुदैता तृष्टिं नीताः तत्पुरवासिनो लोका नृपतिश्च। किं बहुना न कोऽपि ताहक्केनापि चतुरो इष्टो श्रुतो वा। अथैव गच्छिति काले दन्तिलस्य कदाचिद्विवाहः सम्प्रवृतः। तत्र तेन सर्वे पुर-निवासिनो राजसंनिध-लोकाश्च सम्मानपुरःसरम् आमन्त्र्य भौजिता वस्त्रादिमिः सत्कृताश्च। तत्ते विवाहानन्तरं राजा सान्तःपुरः स्वगृहम् आनीय अभ्यर्चितः।

Figure: Document Type A

अत्र धरातले वर्धमानं नाम नगरम्। तत्र दन्तिलो नाम नानाभाण्ड-पतिः सकलपुर-नायकः। तेन पुरकार्यं नृपकार्यं च कुर्वता तुष्टिं तत्पुरवासिनो लोका नृपतिश्च। किं बहुना न कोऽपि ताइक्केनापि चतुरो। अथैव गच्छिति काले दन्तिलस्य कदाचिद्विवाहः। तत्र तेन सर्वे पुर-निवासिनो राजसंनिधि-लोकाश्च सम्मानपुर:सरम् वस्त्रादिभिः। ततो विवाहानन्तरं राजा सान्तःपुर: स्वगृहम्। अस्त्यत्र धरातले वर्धमानं नाम। तत्र नानाभाण्ड-पतिः सकलपुर-नायकः प्रतिवसित स्मा तेन पुरकार्यं नृपकार्यं च कृर्वता तुष्टिं नीताः तत्पुरवासिनो। कि बहुना न अपि ताहक् अपि चतुर्गे हष्टां श्रुतो वा। अधेव गच्छिति काले दन्तिलस्य कदाचिद् सम्प्रवृतः। तत्र पुर-निवासिनो राजसंनिधि-लोकाश्य सम्मानपुर-सरम् आमन्त्र्य भौजिता वस्त्रादिभिः सस्कृताश्य। तत्त विवाहानन्तरं सान्तःपुरः स्वगृहम् आनीय अभ्यर्थितः।

Figure: Document Type B

Figure: Document Type C

4 D > 4 A > 4 B > 4 B >

Dataset Example

Poetry documents: Original, Synonym verb and Distant-meaning verb

सन्तप्तायसि संस्थितस्य पयसो नामापि न जायते मुक्ताकारतया तदेव निलनीपत्रस्थितं राजते। स्वात्यां सागरशुक्तिमध्यपतितं तन्मौक्तिकं जायते प्रायेणाधममध्यमोत्तमगुणः संसर्गतो जायते॥६७॥

Figure: Document Type A

सन्तप्तायसि संस्थितस्य पयसो नामापि न बुध्यते मुक्ताकारतया तदेव नलिनीपत्रस्थितं शोभते। स्वात्यां सागरशुक्तिमध्यपतितं तन्मौक्तिकं भवति प्रायेणाधममध्यमोत्तमगुणः संसर्गतो उत्पद्यते॥६७॥ सन्तप्तायसि संस्थितस्य पयसो नामापि न नमन्ति मुक्ताकारतया तदेव नलिनीपत्रस्थितं पश्यति। स्वात्यां सागरशुक्तिमध्यपतितं तन्मौक्तिकं खादिति प्रायेणाधममध्यमोत्तमगुणः संसर्गतो स्थीयते॥६७॥

Figure: Document Type B

Figure: Document Type C

Regressions

Regressions of the same participant on three types of documents

Figure: Document Type A

Figure: Document Type B

Figure: Document Type C

Fixations

Fixations on the modified data by two different participants

Figure: Poetry Type C

Figure: Prose Type B

Figure: Prose Type B

Figure: Poetry Type C

Saccades

Saccades across the Original Vs. Modified data by the same participant

Figure: Document Type A

Figure: Document Type B

Results and Analysis

Evaluation of the Work

Mean Difference and p-values from T-Test for Regression Count (ROC) and Skip Count (SC)

	ROC		SC	
	M_D	P	M_D	P
P1	0.159	0.000	0.061	0.038
P2	0.234	0.000	0.078	0.012
P3	0.250	0.000	0.180	0.000
P4	0.126	0.001	0.112	0.001
P5	0.062	0.050	0.029	0.194
P6	0.183	0.001	0.064	0.029
P7	0.091	0.029	0.089	0.005

		ROC		SC		
		M_D	P	M_D	P	
P8		0.141	0.001	0.129	0.000	
P9		0.147	0.001	0.134	0.000	
P10	_	0.112	0.005	0.143	0.000	
P11		0.194	0.000	0.025	0.237	
P12		0.163	0.003	0.012	0.364	
P13		0.211	0.000	0.106	0.001	

Table: Dataset 1

		ROC		SC			
		M_D	Р	M_D	P		
	P14	0.188	0.000	0.058	0.053		
	P15	0.072	0.033	0.058	0.053		
	P16	0.244	0.001	0.077	0.015		
ŀ	P17	0.129	0.003	0.055	0.059		
	P18	0.120	0.030	-0.030	0.189		
	P19	0.021	0.247	0.044	0.106		
	P20	0.253	0.002	0.059	0.049		

Table: Dataset 2

Table: Dataset 3

Extra slides!

