Semi-automatic WordNet Linking using Word Embeddings

Kevin Patel, Diptesh Kanojia and Pushpak Bhattacharyya Presented by: Ritesh Panjwani

January 11, 2018

Outline

Introduction

- 2 Background and Related Work
- 3 Problem Statement
- Proposed Approach

5 Evaluation

- 6 Results and Discussion
- Conclusion and Future Work

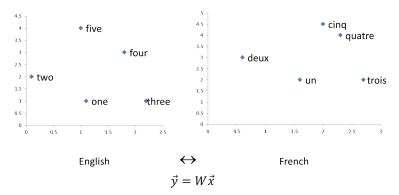
Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Introduc	tion					

- Wordnet
 - Lexical resource
 - Groups words into sets of synonyms called Synsets
 - Records relations among these synsets
- Linked Wordnet
 - Synsets with same meaning, but belonging to wordnets of different languages are linked
 - EuroWordNet Vossen and Letteren (1997) and IndoWordNet Bhattacharyya (2010)
 - Used for Machine Translation Hovy (1998), Cross Lingual Information Retrieval Gonzalo et al. (1998), *etc.*
- Challenge in linking Wordnets
 - Linking done manually
 - Tools such as Joshi et al. (2012b) to assist humans

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Backgro	und					

- Princeton WordNet (Miller et al., 1990) or the English WordNet was the first wordnet.
- EuroWordNet (Vossen and Letteren, 1997) : linked wordnet comprising of wordnets for European languages.
 - Each wordnet separately captures a language-specific information.
 - Wordnets uses Princeton WordNet as an Inter-Lingual-Index.
 - Enables one to go from concepts in one language to similar concepts in any other language.
- IndoWordNet Bhattacharyya (2010) is a linked wordnet comprising of wordnets for 18 Indian languages.
 - Created using the expansion approach using Hindi WordNet as a pivot.
 - Partially linked to English WordNet.

- Joshi et al. (2012a) developed a heuristic based measure where they use bilingual dictionaries to link two wordnets.
 - Combine scores using various heuristics and generate a list of potential candidates for linked synsets.
- Singh et al. (2016) discuss a method to improve the current status of Hindi-English linkage and present a generic methodology
 - Their method is beneficial for culture-specific synsets, or for non-existing concepts
 - Cost and time inefficient; requires a lot of manual effort on the part of a lexicographer.
- Our intention: reduce effort on the part of lexicographers


Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Problem	Stateme	ent				

• Given wordnets of two different languages E and F with sets of synsets $\{s_E^1, s_E^2, \ldots, s_E^m\}$ and $\{s_F^1, s_F^2, \ldots, s_F^n\}$ respectively, find mappings of the form $< s_E^i, s_F^j >$ which are semantically correct.

Hindi Synsets	English Synsets
1: {हाथ, हस्त, कर}	1: {hand, paw}
	2: {tax, revenue enhancement}

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Motivati	ion					

• Adapted from Mikolov et al. (2013a)

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Algorith	m: Notat	cions				

- Let E and F be two languages
- Let |E| and |F| be the number of synsets in wordnets of E and F respectively
- Let s_E^i and s_F^j be the i^{th} and j^{th} synsets of E and F respectively,

•
$$s_E^i = \{e_{\alpha}^1, e_{\alpha}^2, \dots, e_{\alpha}^{m_i}\}$$

• $s_F^j = \{f_{\beta}^1, f_{\beta}^2, \dots, f_{\beta}^{n_j}\}$

• e^{p}_{α} and f^{q}_{β} are words in vocabulary of E and F respectively for $1 \leq p \leq m_{i}$ and $1 \leq q \leq n_{j}$, and $1 \leq i \leq |E|$ and $1 \leq j \leq |F|$

• Let $v_{e_{\alpha}^{p}}$ be the word vector corresponding to e_{α}^{p}

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Algorith	m: Train	ing				

• Estimate $v_{s_F^i}$ as

$$v_{s_{E}^{i}} = \frac{1}{m_{i}} \sum_{p=0}^{m_{i}} v_{e_{\alpha}^{p}}$$
 (1)

• Similarly,

$$v_{s_F^j} = \frac{1}{n_j} \sum_{q=0}^{j} v_{f_\beta^q}$$
 (2)

• Given links of the form $\left\langle s_{E}^{i},s_{F}^{j}\right\rangle$, we learn W such that the error Err

$$Err = \|W.v_{s_{E}^{i}} - v_{s_{F}^{j}}\|^{2}$$
(3)

is minimized.

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Algorith	m: Predi	ction				

- To find a mapping for a new synset s_E^k , one needs to
 - Calculate $v' = W.v_{s_F^k}$
 - Find $v_{s_{F}'}$ such that $v_{s_{F}'}$. v' is maximized
 - Create link $\left< s_{E}^{k}, s_{F}^{l} \right>$

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Datasets	S					

- Linking Hindi WordNet to English WordNet
- English Vectors: Pretrained vectors from Google's word2vec tool Mikolov et al. (2013b), trained on News dataset (around 100 billion tokens)
- **Hindi Vectors**: Trained using word2vec on Bojar corpus Bojar et al. (2014) (around 365 million tokens)
- Linked data: Created at CFILT, IITB
 - Of the form ⟨*hindi_synset_id*, *english_synset_id*, *link_type*⟩, where *link_type* ∈ {*DIRECT*, *HYPERNYMY*, *etc*.}
 - Focus on only DIRECT links
 - 6863 such links available

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Distribu	tion of lir	nks				

Class	Count
Noun	4757
Adjective	1283
Verb	680
Adverb	143

Distribution of available links among various classes

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Evaluati	on metrio	2				

• Accuracy@n: One of the top *n* predictions can be correct

	Predicted Label	Accuracy @1	Accuracy @3	Accuracy @5
True label	Prediction1			
	Prediction2			
	Prediction3			
	Prediction4			
	Prediction5			

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Results:	Overall					

	Acc@1	Acc@3	Acc@5	Acc@8	Acc@10
Overall	0.29	0.45	0.52	0.58	0.60

Results for the overall setting: Dimension of English embeddings=300, Dimensions of Hindi embeddings=300

Results:			Approach		Discussion	Facare Work
Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work

Word Class	Acc@1	Acc@3	Acc@5	Acc@8	Acc@10
Noun	0.35	0.53	0.60	0.65	0.67
Adjective	0.26	0.44	0.50	0.57	0.60
Verb	0.15	0.25	0.29	0.33	0.37
Adverb	0.28	0.51	0.59	0.70	0.73

Results for the setting: Dimension of English Vectors=300, Dimensions of Hindi Vectors=300

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Results:	Per word	d class II				

Word Class	Acc@1	Acc@3	Acc@5	Acc@8	Acc@10
Noun	0.35	0.51	0.58	0.64	0.66
Adjective	0.12	0.20	0.24	0.30	0.32
Verb	0.17	0.27	0.32	0.36	0.39
Adverb	0.38	0.52	0.65	0.76	0.80

Results for the setting: Dimension of English Vectors=300, Dimensions of Hindi Vectors=1200

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Discussi	on					

• Possible reasons for poor performance

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Discussi	on					

- Possible reasons for poor performance
 - Something is fundamentally missing in word vectors. Probably presence of only co-occurence information, and lack of other information such as word ordering, argument frames(for verbs), etc.

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Discussi	on					

- Possible reasons for poor performance
 - Something is fundamentally missing in word vectors. Probably presence of only co-occurence information, and lack of other information such as word ordering, argument frames(for verbs), etc.
 - The approach to create synset vectors is not optimal.

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Discussi	on					

- Possible reasons for poor performance
 - Something is fundamentally missing in word vectors. Probably presence of only co-occurence information, and lack of other information such as word ordering, argument frames(for verbs), etc.
 - The approach to create synset vectors is not optimal.
 - The linear transformation approach is not optimal.

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Discussi	on					

- Possible reasons for poor performance
 - Something is fundamentally missing in word vectors. Probably presence of only co-occurence information, and lack of other information such as word ordering, argument frames(for verbs), etc.
 - The approach to create synset vectors is not optimal.
 - The linear transformation approach is not optimal.
 - Synset members are often phrases instead of words. How to create phrase vectors?

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Discussi	on					

- Possible reasons for poor performance
 - Something is fundamentally missing in word vectors. Probably presence of only co-occurence information, and lack of other information such as word ordering, argument frames(for verbs), etc.
 - The approach to create synset vectors is not optimal.
 - The linear transformation approach is not optimal.
 - Synset members are often phrases instead of words. How to create phrase vectors?
 - Currently, a word has only one vector. That is a one of the reason for ambiguity. Perhaps for each word, multiple vectors (one vector per sense) is the way to go.

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work	
Conclusion and Future Work							

- Described an approach to link wordnets
- Creates synset embeddings using word embeddings, followed by learning transformation from source to target language synsets
- Our approach achieves accuracy@10 of approximately 60% and 70% of all synsets and noun synsets, respectively
- Discussed reasons for poor performance on classes such as verbs
- Plan to integrate it in tools such as Joshi et al. (2012a)

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Reference	ces					

- Bhattacharyya, P. (2010). Indowordnet. In *Lexical Resources* Engineering Conference 2010 (LREC 2010).
- Bojar, O., Diatka, V., Rychlý, P., Straňák, P., Suchomel, V., Tamchyna, A., and Zeman, D. (2014). HindMonoCorp 0.5.
- Gonzalo, J., Verdejo, F., Chugur, I., and Cigarran, J. (1998). Indexing with wordnet synsets can improve text retrieval. *arXiv* preprint cmp-lg/9808002.
- Hovy, E. (1998). Combining and standardizing large-scale, practical ontologies for machine translation and other uses. In *Proceedings of the 1st International Conference on Language Resources and Evaluation (LREC)*, pages 535–542.
- Joshi, S., Chatterjee, A., Karra, A. K., and Bhattacharyya, P. U. (2012a). Eating your own cooking: automatically linking wordnet synsets of two languages.

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Reference	ces					

- Joshi, S., Chatterjee, A., Karra, K. A., and Bhattacharyya, P. (2012b). Eating your own cooking: Automatically linking wordnet synsets of two languages. In *Proceedings of COLING 2012: Demonstration Papers*, pages 239–246. The COLING 2012 Organizing Committee.
- Mikolov, T., Le, Q. V., and Sutskever, I. (2013a). Exploiting similarities among languages for machine translation. *CoRR*, abs/1309.4168.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K., editors, *Advances in Neural Information Processing Systems 26*, pages 3111–3119. Curran Associates, Inc.

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Reference	ces					

- Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. J. (1990). Introduction to wordnet: An on-line lexical database. *International journal of lexicography*, 3(4):235–244.
- Singh, M., Shukla, R., Jha, J., Kashyap, L., Kanojia, D., and Bhattacharyya, P. (2016). Mapping it differently: A solution to the linking challenges. In *Eighth Global Wordnet Conference*. GWC 2016.
- Vossen, P. and Letteren, C. C. (1997). Eurowordnet: a multilingual database for information retrieval. In *In: Proceedings of the DELOS workshop on Cross-language Information Retrieval*, pages 5–7.

Introduction	Background and Related Work	Problem Statement	Proposed Approach	Evaluation	Results and Discussion	Conclusion and Future Work
Thank Y	/ou					

Questions? For more details, write to: kevin.patel@cse.iitb.ac.in