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Eye Tracking Motivation

• Eye-tracking is a means of using cognitive information for solving 
different language processing and understanding tasks.

• Eye-tracking research is based on the Eye-Mind hypothesis:

– There is no appreciable lag between what is fixated and what is 
processed.

– Just & Carpenter. A Theory of Reading: From Eye Fixations to 
Comprehension. (1980)

• Gaze behaviour can be used to personalize the NLP system in 
solving tasks.
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Eye-tracking Motivation

• Example: Sarcasm Understandability (Mishra et al. 2016)
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Eye-tracking Terms

1. Interest Area: An interest area is the area of the screen which is 
of interest for us. Example: Words and the space around them.

2. Fixation: A fixation is an event where the eye is focused on a 
part of the screen.

3. Saccade: The movement of the eye from one fixation point to 
the next.

– Progression: Saccade from a current interest area to a later one.

– Regression: Saccade from a current interest area to an earlier one.

5

SaccadeFixationInterest Area



Gaze Behaviour Corpora: Languages
Dataset Language Stimulus Subjects

Zang et al. (2018)
Chinese

90 sentences 35

Li et al. (2018) 15 documents 29

Cop et al. (2017)
Dutch

1 novel 33

Mak & Willems (2019) 3 stories 102

Kennedy et al. (2003) French 20 documents 10

Nicenboim et al. (2016)
German

176 sentences 72

Kleigl et al. (2004) 144 sentences 55

Safavi et al. (2016) Persian 136 sentences 40

Laurinavichuyte et al. (2017) Russian 144 sentences 96

Nicenboim et al. (2016) Spanish 212 sentences 79
6



Gaze Behaviour Corpora: Tasks

Dataset Task Stimulus Subjects

Joshi et al. (2014) Sentiment Analysis 1059 sentences 5

Mishra et al. (2016) Sarcasm Understandability 1000 Tweets 7

Cheri et al. (2016) Coreference Resolution 22 documents 14

Mishra et al. (2017) Reading Complexity 32 documents 16

Mathias et al. (2018) Text Quality Prediction 30 documents 20
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Learning Gaze Behaviour: Motivation

• Recording gaze behaviour is costly in terms of time and money.

– You must pay annotators.

– You must supervise the annotators.

– It takes time to calibrate and validate the eye-tracker for recording the 
gaze behaviour.

– Noise must be cleaned up post recording the gaze data

– … … …

• Solution:

– Learning gaze behaviour
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Learning Gaze Behaviour: Solutions

• Type Aggregation: For a given token (T), the value of the 
corresponding gaze behaviour feature’s value (F) is the mean 
value of that feature value for the token across the corpus.

• Multi-Task Learning: Learning gaze behaviour features are the 
auxiliary tasks while solving the given NLP problem is the primary 
task.
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Normalizing Gaze Behaviour

• Readers read at different speed. So, gaze data should be 
normalized.

• Min-Max Normalization: For a given reader, normalize the 
feature values of each feature to the range of [0,1].

• Binning: For a given reader, assign the feature value of a given 
gaze feature to a given bin.
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Learning 
Gaze 
Behaviour 
for NLP 
Tasks

• Predicting Fixations While Reading

• Predicting Grammatical Functions

• Text Simplification

• Part-of-Speech Tagging

• Readability

• Sentiment Analysis

• Sequence Classification

• Named Entity Recognition
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Predicting Fixations While Reading

• Nilsson & Nivre (2009) used a 
transition-based approach to 
predict the next fixation.

– Used features like token length, 
token frequency, next token 
length, etc.

• Matthies & Sogaard (2013) 
use a linear CRF model to 
predict the next fixation.

– Used features like word length & 
word probability.

• Example source: Mishra et al. 
(2016)
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Predicting Grammatical Functions

• Barrett & Sogaard (2015) use gaze features to predict 
grammatical functions.

– Gaze features are learnt using type aggregation from the Dundee Corpus 
(Kennedy et al. (2003)).

• Figure shows the dependency parse of the sentence with mean 
fixation durations per word.

– Barrett & Sogaard (2015)
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Text Simplification

• Klerke et al. (2016) use gaze behaviour to learn to simplify text by 
compressing sentences.

– They used multi-task learning, learning the first fixation duration and 
regression durations as auxiliary tasks and compressing the sentence as 
the primary task using Bi-LSTMs.

• Example:

– Input: Intel would be building car batteries, expanding its business model 
beyond its core strength, the company said in a statement.

– Output: Intel would be expanding its business model beyond its core 
strength.
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Part-of-Speech Tagging

• Barrett et al. (2016a) and Barrett et al. (2016b) describe an 
approach to solve PoS tagging using type aggregations from the 
Dundee Corpus in a monolingual (Barrett et al. (2016a)) and 
cross-lingual (Barrett et al. (2016b)) setting using a Hidden 
Markov Model.

• They used a variety of features such as

– Basic gaze features (Eg. Dwell Time)

– Early gaze features (Eg. First Fixation Duration)

– Late gaze features (Eg. Regression-to Duration)

– Context gaze features (Eg. Fixation probability of nearby words)

– Text features (Eg. Word length, corpus frequency)
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Readability

• Gonzalez-Garduno and Sogaard (2018) used a multi-task 
learning multi-layer perceptron with gaze behaviour learnt as an 
auxiliary task to improve prediction of readability.

• Learnt features from the Dundee Corpus and the Ghent Eye-
tracking Corpus (GECO) (Cop et al. (2017).

– Source:Gonzalez-Garduno & Sogaard (2018)
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Sentiment Analysis

• Mishra et al. (2018) perform sentiment analysis by learning Part-
of-Speech tagging and gaze behaviour at run time as auxiliary 
tasks.

– Source: Mishra et al. (2018)
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Sequence Classification

• Barrett et al. (2018) used a multi-task learning approach to solve 
sentiment analysis, grammatical error detection and hate 
speech detection.

• They used an attention-based system where the attention learnt 
was in the form of gaze behaviour as an auxiliary task.

• Their system learnt the gaze behaviour at the token level and the 
task label at the sentence level.
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Named-Entity Recognition

• Hollenstein & Zhang (2019) use a BiLSTM encoder and CRF layer. 
They use word embeddings, concatenated by character 
embeddings and 17 gaze features, namely Basic, Early, Late & 
Context features.

• The features are type aggregated from the Dundee, ZuCo
(Hollenstein et al. (2018)) and GECO (Cop et al. (2017)).

– Source: Hollenstein & Zhang (2019)
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Further Proposed Applications

• 1. Complex Word Identification (CWI)

• 2. Automatic Essay Grading (AEG)

– Currently there is a publication of learning gaze behaviour for AEG 
(Mathias et al. (2020)).
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Complex Word Identification

• CWI is identifying whether a word / phrase is complex in the 
given context.

• It is important for the task of lexical simplification.

• Gaze behaviour research has been done on quantifying 
complexity:

– Translation Complexity – Mishra et al. (2013)

– Sentiment Annotation Complexity – Joshi et al. (2014)

– Scanpath Complexity – Mishra et al. (2017)

• But no work has been done on learning gaze behaviour for 
complex word identification.
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Automatic Essay Grading

• Scoring a text written in response to a topic, called the essay 
prompt.

• Mathias et al. (2018) showed that gaze behaviour can help in 
predicting the quality rating of a text given by a reader.

• Mathias et al. (2020) is a recent work which shows a solution to 
automatic essay grading where gaze behaviour is learnt as an 
auxiliary task.
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Concluding Remarks

• Gaze behaviour has been shown to aid in solving multiple NLP 
tasks (Mishra & Bhattacharyya (2018)).

• However, collecting gaze behaviour at run time is not feasible. 

• In order to use gaze behaviour, we utilize different approaches, 
like multi-task learning, using type aggregated values, etc.

• Gaze behaviour has been learnt for solving multiple NLP tasks 
such as PoS tagging, sentence compression, Named-Entity 
Recognition, sentiment analysis, automatic essay grading, etc.
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Thank You!
Questions?
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