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Abstract

Acronyms are abbreviated units of a phrase constructed by
using initial components of the phrase in a text. Automatic
extraction of acronyms from a text can help various Nat-
ural Language Processing tasks like machine translation,
information retrieval, and text summarisation. This paper
discusses an ensemble approach for the task of Acronym
Extraction, which utilises two different methods to extract
acronyms and their corresponding long forms. The first
method utilises a multilingual contextual language model and
fine-tunes the model to perform the task. The second method
relies on a convolutional neural network architecture to ex-
tract acronyms and append them to the output of the pre-
vious method. We also augment the official training dataset
with additional training samples extracted from several open-
access journals to help improve the task performance. Our
dataset analysis also highlights the noise within the current
task dataset. Our approach achieves the following macro-F1
scores on test data released with the task: Danish (0.74),
English [Legal] (0.72), English [Scientific] (0.73), French
(0.63), Persian (0.57), Spanish (0.65), Vietnamese (0.65). We
release our code and models publicly1.

1 Introduction
Acronyms are commonly used to shorten known units of
text in various domains such as scientific (Pustejovsky et al.
2001), medical (Dannélls 2006), business (Ménard and Ratté
2011) and legal (Tsimpouris, Sgarbas, and Panagiotopoulou
2015). Humans can usually identify acronyms in a text with-
out too much difficulty by relying on various surface clues.
Without knowing the meaning of acronyms, it is not possi-
ble to understand a text properly. Moreover, in absence of
the long forms of an acronym translators and interpreters
may have difficulties translate a text reliably.

Automatic identification of acronyms and their corre-
sponding long forms is a relevant issue in the domain of
Natural Language Processing (NLP) as it can help tasks
such as information extraction and retrieval (Sánchez and
Isern 2011; Ballesteros and Croft 1996), machine transla-
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Figure 1: Examples of Long Forms and their Acronyms

tion (Kirchhoff and Turner 2016) and also machine inter-
preting (Braun 2019). Acronyms represent relevant parts of
the text and can confuse translation models. Thus, the task
of automatically identifying and extracting acronyms from a
text can be challenging for a machine. The shared task-1 for
acronym extraction (AE) under the Scientific Document Un-
derstanding (SDU) workshop2 allows researchers to tackle
this challenge and propose novel ways to solve it. The task
requires participants to submit systems that can automati-
cally identify acronyms and their long forms from a given
piece of text. Figure 1 shows two examples of acronyms and
their long forms from the English dataset (Scientific domain)
and English dataset (Legal domain). These examples are
from the task dataset provided as-is to the participants. The
acronyms in parentheses are highlighted in yellow, and their
respective long forms are underlined. Automatic acronym
extraction can be particularly challenging and based on our
analysis of the training data for this task (Veyseh et al.
2022b), we observe:
• Acronyms are known to be present in uppercase letters in

the text, but there can be instances where they can contain
lowercase letters (e.g., CATiB, SEqui, OEqul, SRals ing)

• There can be instances where the long forms of the
acronyms are not present in the text (e.g., We originally
developed BBLT for ourselves..)

• There can be different long forms for the same acronym
(e.g., CT has been used as an acronym for both “contract”
and “certain”)

• Acronyms can have special characters present in them
(e.g., Communist Party of the Philippines-New Peoples

2https://sites.google.com/view/sdu-aaai22/home



Army-National Democratic Front (CPPNPA-NDF) )
• Multiple acronymised letters are part of the same word

(e.g., subsequence kernel (SSK), maximum entropy
(MaxEnt) )

Apart from the challenges discussed here, we also noted
noise in the dataset, which we discuss in the dataset analy-
sis subsection later (Section 3). However, for the challenges
discussed here, rule-based approaches fail, in particular, as
they try to generalise over a pattern or a regular expression
to detect acronyms from the text. There are multiple outliers
that cannot be detected with the help of such approaches,
as can be seen in the results of the rule-based approach im-
plemented by the organisers of this task as a baseline. We
discuss this approach in brief in Section 4. For this reason,
we focused our efforts to develop a data-driven approach
(more precisely a deep learning-based approach) to extract
acronyms from the multilingual dataset prepared by the or-
ganisers of the shared task.

In this paper, we describe our efforts to create a system
that can extract acronyms and their long forms from a multi-
lingual dataset. We model the task of acronym extraction as a
sequence labelling problem and perform token classification
considering each dataset sample as a sequence. After exper-
imenting with several architectures, we decided to use an
Ensemble approach which relies on two methods. The first
method utilises the Transformer-architecture-based multilin-
gual language model, XLM-R (Conneau et al. 2019), to per-
form fine-tuning and extract acronyms. We also perform the
acronym extraction task with the help of a Convolutional
Neural Network (CNN), which employs word embeddings
from a different source, as described later in our work. The
resultant outputs from both these methods are then com-
bined to create an ensemble output which we submit to ob-
tain our scores for the task.

2 Related Work
The task of extracting acronyms from text has been per-
formed in different domains for English, with most of the ap-
proaches being rule-based approaches (Taghva and Gilbreth
1999; Yeates 1999; Park and Byrd 2001; Larkey et al.
2000). Schwartz and Hearst (2002) implemented an algo-
rithm for identifying acronyms by using parenthetical ex-
pressions as a marker of a short form. Their work is based
on a previous work by Pustejovsky et al. (2001) which also
extracts acronyms using a similar method. Dannélls (2006)
performs the extraction of acronym-definition pairs from
Swedish medical texts by primarily using a rule-based ap-
proach to extract acronyms and then a memory-based su-
pervised machine learning approach to compare and evalu-
ate the results. A rule-based approach was also implemented
by Okazaki and Ananiadou (2006) for term recognition, and
it discusses the extraction of acronyms and their long forms.
This system mines acronyms based on parenthetical expres-
sions as a marker of a short form as previous methods had
described. However, for mining long forms, they created a
candidate list based on frequent co-occurrences of word se-
quences. Movshovitz-Attias and Cohen (2012) investigate
the use of Hidden Markov Model (HMM) for the extrac-

Training Development Test

Danish 3082 385 386
English (Legal) 3564 445 446
English (Scientific) 3980 497 498
French 7783 973 973
Persian 1336 167 168
Spanish 5928 741 741
Vietnamese 1274 159 160

Table 1: Dataset Statistics, in terms of number of dataset
samples, for the Acronym Extraction task as provided by
the task organizers.

tion of acronyms from text. Ehrmann et al. (2013) show
how acronym recognition patterns, initially developed for
medical terms, can be adapted to the more general news
domain. Their efforts led to automatically merging the nu-
merous long-form variants referring to the same short form
while maintaining non-related long forms separately. Their
work is based on the algorithm developed by Schwartz and
Hearst (2002), but they perform the task of acronym extrac-
tion for 22 languages.

Machine learning-based approaches for the extraction
of acronyms have been utilised in many previous stud-
ies (Nadeau and Turney 2005; Kuo et al. 2009). With the
advancement of research in NLP, various methods to ex-
tract word embeddings for text have been proposed, the
most recent of them being contextual language models.
To detect acronyms without local definitions, Rogers, Rae,
and Demner-Fushman (2021) applied two deep learning ap-
proaches: bi-directional LSTM with CRF and Transformer
models. Li et al. (2021) utilise transformer-based architec-
ture for modelling the task of acronym identification as a
sentence-level sequence labelling problem. Zhu et al. (2021)
incorporate the FGM adversarial training strategy for fine-
tuning BERT for robust and generalised acronym identifica-
tion. This was the winning system for the Acronym Extrac-
tion Shared Task held at SDU workshop in 2021.

In this paper, we employ the previously proposed ap-
proach of fine-tuning a language model for the task of
acronym extraction (Kubal and Nagvenkar 2021). However,
we extract additional data from PLOS journals and perform
additional data analysis. We describe data augmentation and
pre-processing techniques in the upcoming sections.

3 Dataset
The dataset provided by the task organisers consists of
independent sentences in Danish, English, French, Per-
sian, Spanish, and Vietnamese languages in the JSON for-
mat (Veyseh et al. 2022a). The English dataset is further di-
vided into two different domains: legal and scientific. The
dataset statistics can be seen in Table 1. However, each text
sample can contain multiple lines of the text, thus contain-
ing up to 1050 words in each sample as observed from the
training dataset.



Figure 2: System Architecture for Our Ensemble Approach

Dataset Preprocessing
The fact that we model the task as a sequence labelling prob-
lem required us to convert the text provided into a BIO (short
for Beginning, Inside, Outside) format. BIO is a common
format for tagging a token in a chunking or a named en-
tity recognition task in computational linguistics (Ramshaw
and Marcus 1999). We convert each JSON task dataset into
the BIO format with the help of a custom script written in
Python. The custom tags we use to convert each token in the
sequence resemble Named Entity tags and result in the fol-
lowing list of tags: [O (Outside), B-AN (Begin Acronym),
I-AN (Inside Acronym), B-LF (Begin Long Form), I-LF
(Inside Long Form)].

Dataset Analysis
We analysed the dataset provided for the task and observed
the following issues:
• There are instances with missing or incomplete annota-

tion (e.g. the acronym SDI has associated with the long-
form “selective dissemination” instead of “selective dis-
semination of information”, which is present in the in-
stance).

• Segments with wrong annotation (e.g. “US$ 3” was an-
notated as an acronym of “USh 3,000”, when these are
actually conversions between two currencies).

• Segments with over-annotation (e.g. the acronym
“(GHS)” had the brackets included in the annotation).

In an analysis performed on the first 100 instances of the
English scientific training dataset, we found 28 instances
with such issues. These issues were also found in 21 in-
stances among the first 100 instances of the English legal
training dataset. The presence of such a high number of er-
rors in the dataset poses some serious challenges to any data-
driven method.

Data Augmentation
To increase the amount of training data, a separate training
dataset was created by using information extracted from the
PLOS3 open-access journal publications. The XML versions
of these publications are freely distributed along with the
PMC Open Access Subset 4 and amount to 305,445 texts.

3https://plos.org/.
4https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/.

The XML files in the PLOS corpus have a section for
abbreviations, where all abbreviations used in a paper are
made explicit along with their long forms. This informa-
tion was used to extract sentences from research articles
within the PLOS corpus. For the augmented dataset, only
sentences containing at least one abbreviation with a related
long-form were included (other abbreviations with or with-
out long forms could be present as well). This augmented
training dataset contained a total of approx. 93k samples for
English (Scientific domain).

4 Our Approach

The baseline approach provided the task organisers uses a
single rule, i.e., if the word inside a parenthesis contains
more than 60% uppercase letters, it is to be identified as an
acronym. Moreover, the number of uppercase letters in this
acronym form a sliding window for words before/after the
acronym. If each uppercase letter matches the first charac-
ters of words in the sliding window, the words constitute the
long-form phrase. This approach clearly fails to address the
challenges discussed in Section 1 of the paper. The result-
ing macro-F1 scores for the baseline approach on the de-
velopment data are: English (Legal) - 0.1258, English (Sci-
entific) - 0.1084, Danish - 0.0950, French - 0.0806, Span-
ish - 0.0831, Persian - 0.4437, Vietnamese - 0.3538. Hence,
we needed to look for alternative methods for identifying
acronyms and their long forms. After considering a number
of options, we decided to experiment with a deep-learning-
based ensemble approach.

Our Ensemble Approach: We concatenate all the mul-
tilingual task data into a single training dataset. This was
then concatenated with the PLOS data described above to
increase the train data size to approx. 113k dataset sam-
ples. This data is used to fine-tune the multilingual language
model described below to perform the acronym extraction
(AE) task. We obtain the test output from two different meth-
ods described below and concatenate them. The fine-tuning
method described below is able to label both acronyms and
long forms. The spaCy blank model-based method described
below is only able to obtain acronyms for the task but helps
achieve improved F1 scores for the task. The architecture for
our approach is shown in Figure 2.



Fine-tuning with XLM-RoBERTa
XLM-RoBERTa (XLM-R) (Conneau et al. 2019) is a mul-
tilingual contextualised Language Model (LM) pre-trained
on filtered CommonCrawl data from 100+ languages. Each
language dataset from this task is included in this model5.

Our approach utilises this transformer architecture-based
pre-trained LM and fine-tunes it for the downstream se-
quence labelling task. The LM used for our approach is
XLM-Rbase, and has approximately 270M parameters with
12-layers, 768 hidden states, 3072 feed-forward hidden
states, 8 heads; and is pre-trained on CommonCrawl data in
over 100 languages. The fine-tuning process adds a hidden
linear layer on top of the pre-trained LM and projects the
output to a softmax layer for token classification. We per-
form further hyperparameter tuning as described below.

We observed that during the inference phase, the output
token length was truncated to 128 tokens as it was the de-
fault ‘maximum sequence length’ parameter. To preserve
the entire token length, the two parameters, namely, ‘slid-
ing window’ and ‘maximum sequence length’ were being
used with the original model. The sliding window prevents
the truncation of sentences by splitting the input sequence
into multiple windows if it exceeds the default maximum
sequence value. The sliding window problem represents the
broken contextual information while predicting token class,
and hence it was not used. We carried out multiple experi-
ments with the ‘maximum sequence length’ parameter and
observed that the model performed the best when it was lim-
ited to 512. The other values for maximum sequence length
we experimented with were 128, 256, 350, 450, and 512.
The language model was fine-tuned by using the fairSeq (Ott
et al. 2019) library. We used an NVIDIA Quadro RTX 5000
GPU with 16 GB of memory for carrying out these experi-
ments. This approach utilizes the training data to learn how
to classify each token as B-AN, I-AN, B-LF and I-LF, in the
text. With the help of further post-processing using a custom
script in Python, we were able to convert the predictions in
the JSON format as required for the evaluation phase of the
task.

spaCy Blank Model
The other model that we used for AE was a spaCy v3.26

blank NER model. The spaCy v3.2 model is based on pre-
dicting context-sensitive vectors for each word in the input
by a token-to-vector model. The embeddings in this model
are obtained from the Bloom embeddings where each sub-
word is transferred into a string of fixed symbols (e.g. 0-9
integer transferred to letter d, capital letter to W and lower
case letter to w) (Serrà and Karatzoglou 2017). This strat-
egy has proven to be effective in handling out-of-vocabulary
(OOV) tokens; instead of dumping all OOVs in one bucket,
each OOV is given a unique representation. The method of-
fers a variety of neural architectures for building a blank
NER model to predict task-tailored entities. We opted for
the trigram-CNN architecture learning via a transition-based

5https://github.com/facebookresearch/XLM
6https://spacy.io/models

F1 P R
Danish 0.74 0.78 0.70
English (Legal) 0.72 0.75 0.69
English (Scientific) 0.73 0.77 0.69
French 0.63 0.68 0.59
Persian 0.57 0.64 0.51
Spanish 0.65 0.65 0.65
Vietnamese 0.65 0.64 0.66

Table 2: Results obtained using our ensemble approach over
the test data as provided for the task where P is Precision, R
is Recall, and F1 is the Macro-F1 score as used for the task.

approach which takes a window of the embeddings on ei-
ther side of each word in the sentence and concatenates
them in a multi-layered perceptron followed by an atten-
tion layer (Lample et al. 2016). A Maxout Unit (Goodfellow
et al. 2013) is used as an activation function that calculates
the ‘maximum’ of the inputs. These architecture parameters
have performed well for NER tasks7.

For training, we use the English (Scientific) and English
(Legal) training sets consisting of 7523 instances and evalu-
ate our method on the English (Scientific) and English (Le-
gal) development sets. We use a limited training dataset
as these experiments are performed with CPU cores. Be-
fore training, we pre-processed the data to conform with
the ‘.spacy’ format, where each positive instance was as-
signed the NER label acronym along with its specific in-
dices. For the spaCy pipeline parameters, we chose the
spaCy en core web sm model, which is the small model
trained on written English language web text (blogs, news,
comments) including vocabulary, vectors, syntax and enti-
ties. We trained this model on a CPU with 100 iterations and
with a batch size of 1000.

We used this model as a zero-shot model for the AE task
with the test sets of the other four languages during the final
stage of the shared task. A note on the reason for choos-
ing this blank spaCy model for AE in this task is that it
has a CPU-optimised pipeline, and it is much cheaper to run
than pre-trained models. Due to its competitive results to the
more expensive pre-trained models, we plan to explore train-
ing a spaCy model with more data for future AE task.

5 Results and Discussion
Using the fine-tuned XLM-R model, we obtained acronyms
and long forms for the test data provided for this task. We
then concatenated this output with the output from the spaCy
blank model. The results obtained for the final test set output
are present in Table 2. Our approach was outranked by sev-
eral other systems submitted for the task, but we show a sig-
nificantly improved set of results over the baseline method
proposed for the task. Our results also show how the AE
task can be modelled as a sequence labelling problem, thus

7https://v2.spacy.io/usage/facts-figures



utilising pre-existing architecture for the NER problem in
NLP. The performance of our approach in comparison to
other systems submitted at the task was comparatively lower,
which can be attributed to the fact that we use a single mul-
tilingual training model for all the languages. We also use a
rather simple fine-tuning based approach and do not add a
more sophisticated neural networks-based architecture.

The output obtained using the fine-tuning method de-
scribed above outperforms the rule-based baseline approach
by a significant margin. This method helps our approach
gain significant percentage points for both acronyms and
long forms as compared to the baseline approach. How-
ever, we observed that this method did not recognise many
acronyms, resulting in low recall values. We also observed
that due to the noise present in the data, this method tagged
special characters like ‘)’ as a part of the acronym. We also
observed that the fine-tuning process tagged a lot of stop-
words as long forms even when they were not a part of any
long-form sequence (e.g., for, the, of). We post-process the
output of this model to rectify such errors.

The performance of the spaCy method, however, is sig-
nificantly better at extracting acronyms as it uses a CNN ar-
chitecture and performs well for the English language. How-
ever, it needs to be pointed out that, despite the fact that the
dataset was multilingual in nature, most instances of long
forms and acronyms were present in the English language.
The results of the spaCy model for the extraction of only
acronyms against the development set were: English Sci-
entific - Precision: 0.8847, Recall: 0.7990, F1: 0.8397; and
English Legal - Precision: 0.9168, Recall: 0.7354 and F1:
0.8161. As noted, this method only extracts acronyms and
does not work well with long forms.

In most of the cases, we observed that our approach ob-
tains higher precision than recall. This observation is ex-
pected as the fine-tuning process expects a lot more ‘O’ to-
kens compared to the AN or the LF classes. Our approach,
which classifies each token, confuses a lot of ‘AN’s as ‘O’s.
In fact, when the output of the spaCy model was deconcate-
nated, we observed that the XLM-R based method for the
Persian language had only achieved an F1 of 0.27 compared
to the overall F1 of 0.57. The task performance of our ap-
proach on the Spanish test data, however, is an exception as
it shows a steady Precision, Recall, and F1 scores of 0.65.

6 Conclusions and Future Work
In this paper, we propose a deep-learning-based approach to
extract acronyms and long forms from the data provided for
the task. We discuss the problem of acronym extraction and
show how challenging it is to accomplish this task automat-
ically. The dataset provided for the task is multilingual in
nature, and our approach attempts to build a single model
which can handle all the languages. However, our dataset
analysis shows that the data provided for the task should in-
deed be manually validated first to remove the noise. We
also augmented this dataset with more samples from the
PLOS open-access journal to improve the dataset size, but it
is unclear how much this helped improve the performance.
We modelled this AE task as a sequence labelling problem

and used an ensemble approach which utilises two differ-
ent methods: (1) based on fine-tuning the XLM-R model to
extract ANs and LFs, and (2) based on using a CNN archi-
tecture provided by spaCy blank modelling method. Our re-
sults significantly outperform the baseline results and show
that this approach does work for the AE task. We release the
code and the models used for this task8.

For the future, we aim to perform this multilingual AE
task by separating the models individually for each lan-
guage. We plan to use the data from PLOS to augment each
training dataset and perform further experiments. We also
plan to collect more data for each language for the task and
augment it with the training data for each of the models.
With this augmented resource, we plan to perform an exten-
sive analysis of the acronym extraction task and present our
findings in the near future. Our eventual goal is to perform
exhaustive experimentation with various datasets/methods
and empirically find the best performing approach for this
task.
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