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Abstract

Given a noun compound (NC), we address
the problem of predicting the appropriate
semantic label linking the constituents of the
NC. This problem is called Noun Compound
Interpretation (NCI). We use FrameNet as a
semantic label repository. For example, given
the noun compound (board approval), we pre-
dict the frame (DENY OR GRANT PERMISSION,
as per FrameNet) as appropriate and
the semantic role of the modifier word
(AUTHORITY) as the semantic label linking
board and approval; the resulting label is
DENY OR GRANT PERMISSION:AUTHORITY.

Our semantic label repository is very large (≈
11k labels) compared to the NC data available
for training (approx 1900). Thus, learning in
this case, especially for unseen semantic la-
bels, is hard. We propose to solve this prob-
lem by predicting semantic labels in a contin-
uous label embedding space, which is novel.
This embedding space is created by learning
label embeddings using the FrameNet data.
The embeddings are then used to train two
separate models – one for predicting Frames
and the other for FEs. As the label embed-
ding space captures the semantics of the labels,
using these embeddings enables generalizing
well on unseen labels, thus achieving zero-shot
learning. Our preliminary investigations show
that the proposed approach performs well for
unseen labels, achieving 5% and 2% points im-
provements over baselines for the frame and
FE prediction, respectively. The study shows
the promise of the use of continuous space
embeddings for noun compound interpretation
and points to the need for further investigation.

1 Introduction

A noun compound is a sequence of two or more
nouns that act as a single entity with well-defined
meaning (e.g., paper submission, colon cancer,
etc.). Semantic relations between the component

nouns are implicit. For instance, the information
that ‘it is a juice made from orange’ is hidden in
orange juice. Uncovering this semantic relation
is called the problem of Noun Compound Inter-
pretation (NCI). NCI needs ML, as the task faces
the challenge of ambiguity, and disambiguation by
rules is well nigh impossible because of multifari-
ous complex underlying language phenomena. The
proposition of storing NCs and doing table lookup
for interpretation is also impractical due to a large
number of NCs and the challenge of high produc-
tivity (new nouns and NCs get created frequently,
e.g., corona vaccine is a relatively new NC).

Often, the exact relation, sentiment, etc. are also
governed by contextual pragmatics. For instance,
the sentiment towards tax money depends on who
the beneficiary is, which again depends on the pred-
icate. The predicate give could indicate negative
sentiment (for the tax-payer), whereas the predicate
receive would indicate positive sentiment (for the
government). Due to such instances, NLP tasks
such as machine translation (Baldwin and Tanaka,
2004; Balyan and Chatterjee, 2015), textual en-
tailment (Nakov, 2013), question answering (Ahn
et al., 2005), etc. suffer when they encounter noun
compounds. For example, from the below text-
question pairs, a system would need to interpret
the underlying semantics within the compound, to
answer the question correctly.

(a) “student protest”: “who is protesting?”,

(b) “fee-hike protest”: “why protest?”, and

(c) “university protest”: “where is the protest?”

In this work, we interpret only compositional
noun-noun compounds. A noun-noun compound is
categorised as compositional, if the meaning of the
compound can be composed from the semantics of
the individual noun units present.
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From a relation representation perspective, noun
compounds are interpreted in two ways: via la-
belling and paraphrasing. Labelling involves as-
signing an abstract semantic relation from a pre-
defined set, for example, orange juice: MADEOF,
hillside home: LOCATION, etc. There are many in-
ventories of predefined semantic relations.

We use the FrametNet based labels proposed by
Ponkiya et al. (2018a). As per their convention, the
head noun of a compound invokes the frame, and
the modifier noun fits in one of the frame elements
of the invoked frame, vide ‘board approval’ in the
abstract.

There are more than 11,000 FEs in FrameNet,
and we have about 1900 training examples. Thus,
the average number of examples for each label is
quite small, and many labels do not have a training
example. In summary, the contributions of this
paper are three-fold:

1. We embed FrameNet entities in a continuous
space, perform prediction in the continuous
space to generalize over unseen labels, and
show performance improvement on the un-
seen labels.

2. We create a noun-compound annotation tool
that assists annotators in providing manual
labels, and we release it publicly.

3. Using the above tool, we extend the dataset
released by Ponkiya et al. (2018a) with 326
more manually-annotated gold samples, and
release it for further research.

The rest of the paper is organized as follow: Sec-
tion 2 discuss related work, Section 3 gives an
overview of foundations for the work. Section 4
details our approach. Section 5 provides experi-
mental details: the dataset used and training/testing
setup. Section 6 discusses the results and analysis,
followed by a conclusion and future work. The
code, dataset and the tool can be downloaded from
http://www.cfilt.iitb.ac.in/nc-dataset.

2 Related Work

A relation between the components of a noun com-
pound (say, chocolate cake) can be represented in
one of the following two ways: (1) assigning a re-
lation from a predefined set of semantic relations
(MADEOF), or (2) using a paraphrase to convey the
underlying semantic relation (“cake made using
chocolates” or “cake with chocolate flavor”).

Noun-compound (NC) interpretation via la-
belling is the most commonly used methodology
for NC interpretation. Scholars have proposed
many inventories of semantic relations (Levi, 1978;
Warren, 1978; Vanderwende, 1994; Lauer, 1995;
Barker and Szpakowicz, 1998; Ó Séaghdha, 2007;
Rosario et al., 2001; Tratz and Hovy, 2010; Fares,
2016; Ponkiya et al., 2018a). A recent FrameNet-
based inventory by Ponkiya et al. (2018a) proposed
FEs (Frame Elements) from FrameNet as labels
(or, semantic relations). They released a dataset by
annotating each noun compound with a frame and
a frame element; and proposed this annotation for
predicate ‘nominalization’. However, it also works
for most of the cases of ‘predicate deletion’.

For automatic labelling, Dima and Hinrichs
(2015) and Fares et al. (2018)’s architecture is sim-
ilar to ours. Dima and Hinrichs (2015) proposed a
feed-forward neural network-based approach. This
network takes concatenated embeddings of compo-
nent nouns as an input and predicts one of the labels
from the Tratz and Hovy (2010)’s label set. Fares
et al. (2018) used a similar feed-forward network
to predict two types of relations. This network,
however, shares initial layers and separates output
layers for each label type.

NC interpretation via paraphrasing is another
methodology that contains approaches such as
prepositional and free paraphrasing. Prepositional
paraphrasing, i.e., paraphrasing using a preposi-
tion, for example, student protest: “protest by
student(s)”, is a relatively well-attended problem
(Lauer, 1995; Lapata and Keller, 2004; Ponkiya
et al., 2018b). All the above approaches proposed
for prepositional paraphrasing use the fixed-set
of eight prepositions proposed by Lauer (1995).
The other set of approaches, i.e., free paraphras-
ing, however, has not received much attention.
Apart from two SemEval tasks (Butnariu et al.,
2009; Hendrickx et al., 2013), it does not have
much literature available. A recent study (Ponkiya
et al., 2020) expresses paraphrasing as a “fill-in-the-
blank” problem, and utilizes pre-trained language
models, for the task of noun-compound interpreta-
tion.

3 Foundations

Levi (1978) performed a linguistic study to under-
stand how noun compounds are generated. They
call such compounds nominal compounds. This the-
ory puts nominal compounds into two categories,

http://www.cfilt.iitb.ac.in/nc-dataset
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based on the compounding process, as

1. Predicate Deletion: Here, a predicate be-
tween the components is dropped to create
a compound.

For example, apple pie is a “pie made from
apple.” The predicate made from is dropped
in this case. Similarly, for elbow injury, gas
pipeline, etc.

2. Predicate Nominalization: Here, the head
noun is a nominalized form of a verb, and the
modifier is an argument of the verb.

For example, “The union demonstrated
against the price hike. . . ” becomes “The
union demonstration against the price
hike. . . ”

Verbal noun as head: student demonstra-
tion, government approval, opposition
objection, etc.

Verb form as head: student protest, govern-
ment support, competition schedule, etc.

Levi (1978) also proposed a set of abstract pred-
icates1 for the former category, but no relation for
the latter category. Later, Ó Séaghdha (2007) re-
vised this inventory and proposed a two-level hier-
archy of semantic relations.

Ponkiya et al. (2018a) proposed a method to use
FrameNet based labels for noun compounds. Here,
the head noun invokes a frame, and the modifier
noun fits in one of the slots of the frame. They also
prepared a dataset by annotating each noun com-
pound with a frame and a frame element. Ponkiya
et al. (2018a) proposed this annotation for predicate
nominalization, which also works for most cases
of predicate deletion.

3.1 FrameNet

FrameNet2 (Baker et al., 1998) is a taxonomy based
on Fillmore’s theory of Frame Semantics. This
theory claims that most words’ meanings can be
inferred based on a semantic frame: a conceptual
structure that denotes an abstract event, relation,
or entity and the involved participants. For exam-
ple, the concept of questioning involves a person
asking a question (SPEAKER), person/people begin
questioned ADDRESSEE, the content of the question
MESSAGE, and so on. In FrameNet, such a concept is

1RDP (Recoverable Deleted Predicates)
2https://framenet.icsi.berkeley.edu

represented by QUESTIONING frame. The participat-
ing entities, such as SPEAKER, ADDRESSEE, MESSAGE,
etc., are called frame elements (FEs). Such frames
are invoked in running text via words known as
lexical units. Some of the lexical units for the
QUESTIONING frame are ask, grill, inquire, inquiry,
interrogate, query, etc. FrameNet data provides
two types of linkages between entities:

(a) relations: linking among frames or among
FEs, and

(b) mappings: linking from words to frames and
from frames to FEs.

3.1.1 Relations
FrameNet includes a graph of relations between
frames along with relations among frames. Some
of the important frame relations are:

• Inheritance: close to a typical Is-A relation,
e.g., PROTEST

Is-A−−→ INTENTIONALLY ACT

• Using: the child frame presupposes the parent
frame, e.g., PROTEST

Uses−−→ TAKING SIDES

• Subframe: the child frame is a subevent of
a complex parent event, e.g., TRIAL

Subframe−−−−−→
VERDICT

Along with each frame relation, FrameNet also
consists of relations between FEs of parent-child
frames. Following are illustrative examples for FE
relations for the above frame relations:

• PROTEST:PROTESTER
Is-A−−→ INTENTION-

ALLY ACT:AGENT.

• PROTEST:PROTESTER
Uses−−→ TAK-

ING SIDES:COGNIZER

• TRIAL:JUDGE
Subframe−−−−−→ VERDICT:JUDGE

3.1.2 Mappings
FrameNet data provides two types of mappings:
(a) words to frames (via lexical units), and (b)
frames to FEs. For instance, protest word can
invoke three frames: PROTEST, POLITICAL ACTIONS,
and JUDGMENT COMMUNICATION. Similarly, using the
frame to FEs mapping, we can list all FEs of the
PROTEST frame, which are ACTION, ISSUE, PROTESTER,

SIDE, DEGREE, DESCRIPTOR, DURATION, EXPLANATION,

FREQUENCY, MANNER, MEANS, PLACE, PURPOSE, TIME,
etc.

https://framenet.icsi.berkeley.edu
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In our work, we utilize Relations for the gen-
eration of frame and frame element embeddings
(§3.2). We, further, utilize the Mappings to prune
the search space (§4.1).

3.2 Knowledge Graph Embeddings
A Knowledge Graph G is a set of relations R de-
fined over a set of entities E . Formally, it is com-
prised of a set of N triples (h, r, t), where h and
t are called head and tail entities, and r denotes a
relation among them.

G = {(h, r, t) : h, t ∈ E ; r ∈ R}

Knowledge Graphs are widely used to store
knowledge in a structured format, and they play an
important role in representation learning. Methods
for learning representations for both entities E and
relationsR have been explored (Wang et al., 2017)
with an aim to represent graphical knowledge.

Various algorithms for representation learning
have been proposed, which help tasks such as
link prediction etc. TransE (Bordes et al., 2013)
is a method that models relationships by inter-
preting them as translations operating on the low-
dimensional embeddings of the entities. We use
the ConvE (Dettmers et al., 2018) algorithm to get
embeddings of frames and frame elements. For
the training of ConvE, we treat all relations from
FrameNet as triples of a knowledge graph.

3.2.1 ConvE
Convolution-based Embeddings is a multi-layer
2D-convolution network model proposed by
Dettmers et al. (2018). It usages fewer parame-
ters, yet efficient compared to similar models. It
defines the scoring function (for each relation r) as
follows:

ψr(eh, et) = f(vec(f([eh; er]w))W )et (1)

where, eh, er and et are embeddings of head h,
relation r and tail t, respectively, x denotes reshap-
ing of vector x to a matrix, f is a rectified linear
unit (relu) function, vec converts a matrix into a
flat vector, w is convolution kernel, and W is the
parameter of a fully connected layer.

For training, it applies logistic sigmoid function
σ(·) to the scores, and minimize the binary cross-
entropy computed using the following formula:

LCE = − 1

N

∑
i

(ti ·log(pi)+(1−ti)·log(1−pi))

(2)

where, p = σ(ψr(eh, et)) and t is 1 when
(h, r, t) ∈ G, 0 otherwise.

ConvE uses two embedding layers: one for en-
tities and the other for relations, which initializes
the embeddings layers randomly. The embeddings
layers get updated during the training. At the end
of the training, the embedding layers contain the
embeddings for entities and relations.

4 Our Approach

FrameNet has 1223 frames and 11,473 frame ele-
ments. However, the existing dataset for FrameNet-
based noun compound interpretation does not have
examples for many frames and frame elements.
However, unlike other relation inventories, we have
FrameNet taxonomy, which can help in building
a better model. We first explain our frame pre-
diction approach and then extend the same for FE
prediction.

4.1 System Architecture

We encode a given noun compound nc = w1 w2

(say, divorce rate) using a feed-forward network
to get vector vnc. Using FrameNet API, we
create a set of candidate frames that can be in-
voked by w2 (rate → {ASSESSING, PROPORTION,

SPEED DESCRIPTION, etc.}). For each candidate
frame fi, we take its frame embedding efi from
the frame embedding layer. We take the dot prod-
uct of vnc with embedding efi of each frame fi to
compute the score for the frame. For testing, we
use the following formula to predict a frame:

f∗ = argmaxi vnc· efi (3)

Figure 1: Basic system architecture illustrating frame
prediction for divorce rate.

Dima and Hinrichs (2015) and Fares et al. (2018)
use a simple feed-forward network. In our model,
if we remove the frame/FE embedding matrix and
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use them as weights of one more dense layer (after
the “fully-connected layers”), our model becomes
identical to theirs. In doing so, (a) our model will
NOT need any extra computation to compute the
score of labels that are NOT part of the candidate
set, and (b) the back-prorogation does not have to
pass through an additional layer which might not
be effective.

We implement these models in PyTorch (Paszke
et al., 2017). We initialize the word embedding
layer with Google’s pre-trained embeddings3 and
initialize the frame embedding layer with random
values, in one case, for baseline, and pre-trained
frame embedding, in another case.

We use the same architecture to train another
model for FE prediction, replace the frame embed-
ding layer with an FE embedding layer, and can-
didates FEs are the FEs from all candidate frames.
We take all FEs as a candidate set if no such map-
ping is found.

4.2 Frame and Frame Element Embeddings

Inspired by Kumar et al. (2019)’s approach for the
task of Word Sense Disambiguation (WSD), we
propose a similar approach to perform NC interpre-
tation. Our approach uses the definition of entities
(along with the relations) to learn entity embed-
dings and relation embeddings. It uses an encoder
(Bi-LSTM) to encode the definition of an entity
and uses encoded representation as an embedding
of the entity for ConvE. During the training, it also
optimizes both: the encoder and ConvE. After the
training, the encoding of definitions is taken as
entity embeddings.

We train ConvE twice to get frame and frame
element embeddings separately. ConvE training is
independent of the main training.

5 Experimental Setup

In this section, we explain our dataset, baseline,
training, and evaluation metrics.

5.1 Dataset Creation and Analysis

We use the dataset released by Ponkiya et al.
(2018a) as D1. The dataset contains 1546 noun-
noun compounds with two labels: frame and FE.
The dataset was created by extracting noun com-
pound along with labels from the FrameNet data.
As the extraction is automatic and the manual step
only confirms the correctness of the labelling, the

3https://code.google.com/archive/p/word2vec/

labels are not exhaustive. For instance, a noun com-
pound student demonstration has been annotated
with PROTEST:PROTESTER. However, the following
labels are also applicable: REASONING:ARGUER and
CAUSE TO PERCEIVE:ACTOR. So, we annotate more
examples with all possible labels.

Manual Annotation
We manually annotate 326 noun compounds, and
call it D2. We extend D1 by merging these ex-
amples from D2 to perform our experiments. The
annotation is performed by one of the authors and
hence does not warrant discussion on the inter-
annotator agreement. However, please allow us
to point out that our annotations are still manually
performed by a human, which begets the consid-
eration of these annotations to be gold-standard.
The author chose the examples from Tratz and
Hovy (2010)’s dataset randomly. During the anno-
tation process, we found some difficulties because
of the coverage issue of the FrameNet. The word-
to-frame mapping in FrameNet has a coverage is-
sue, and it has been widely reported in the literature
(Pavlick et al., 2015; Botschen et al., 2017).

We categorize the coverage issues into the fol-
lowing:

No Candidate Frames: The word-to-frame map-
ping returned no candidate frame. In some
cases, we could find a frame with manual ef-
fort (ref. Table 1). However, despite manual
efforts, some cases, we could not find an ap-
propriate frame all the time (e.g., star auto-
graph, employee misconduct, etc.).

No Suitable Frame in the Candidate Set: In
this set, word-to-frame mapping retrieved
candidate frames, but none of the candidates
was found to be appropriate. For example,
candidate frames for heat returned by the
mapping are: CAUSE TEMPERATURE CHANGE

Word Manually extracted frames

funding FUNDING

authorities LEADERSHIP, AUTHORITY

eradication REMOVING

harvesting FOOD GATHERING

analyst PEOPLE BY VOCATION

Table 1: Examples where FrameNet data does not con-
tain an appropriate mapping but we manually find suit-
able frames.
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Figure 2: Tool interface to assist annotator in finding a frame. FrameNet does not have mappings for eradication,
however FrameNet+ maps it to KILLING and REMOVING frames.

and CHANGE OF TEMPERATURE. However, none
of the two frames is appropriate for body
heat.

In some cases, we could find an appropriate
frame that was not a part of the candidate
set. For example, for noun compound ul-
cer drug, candidate frames are INTOXICANTS

and CAUSE HARM, but the appropriate frame is
CURE.

No Suitable Frame Element in the Frame: We
could find an appropriate frame, but no frame
element from the frame is appropriate. For
instance, the BUSINESS frame is suitable for
retail operation, but no frame element from
the frame is suitable for the modifier noun
retail.

NC Annotation Tool
To handle the first two cases (finding of a frame),
we use synonyms from WordNet (Miller, 1994) and
FrameNet+ data (Pavlick et al., 2015). To simplify
the annotation process, we develop a tool (Figure
2) that makes the annotation process easier.

We split each dataset – D1 and D1+D2 – ran-
domly for 5-fold validation. Each fold contains
three disjoint sets: training set (60% compounds),
validation set (20% compounds), and test set (20%
compounds). We use the same folds across all ex-

periments, so results across different models are
comparable.

5.2 Frame and Frame Element Embeddings

To get frame embeddings, we consider frames as
entities and frame relations from FrameNet as re-
lations between the entities. Then we train ConvE
(§4.2) to learn frame embeddings. We use these en-
tity embeddings to initialize the frame embedding
layer. Table 2 shows the ten most similar frames for
FRIENDLY OR HOSTILE frame based on cosine simi-
larity between frame embeddings. Similarly, we
get embeddings of frame elements using frame ele-
ments and their relations in FrameNet.

5.3 Baseline

The first baseline is a random prediction: the
probability of predicting a label from a candidate
set is uniform. We take expected counts to com-
pute metrics. For instance, we compute random
accuracy using the following formula:

Accrandom =
1

N

∑
nci∈Test-set

1

|candidates(nci)|
(4)

We also use Support Vector Machines
(SVM) (Cortes and Vapnik, 1995) as a baseline ap-
proach for this task. We use the sklearn library (Pe-
dregosa et al., 2011) with default parameters for
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# Score Name Definition

0 1.0000 FRIENDLY OR HOSTILE Two parties or individuals are on the same sid...
1 0.9763 BE IN AGREEMENT ON ACTION Two (or more) people (the Parties, also encoda...
2 0.9749 MAKE AGREEMENT ON ACTION Two (or more) people (the Parties, also encoda...
3 0.9748 DISTRIBUTED POSITION This frame involves a static (primarily spatia...
4 0.9743 TERMS OF AGREEMENT A condition that is set out in an Agreement im...
5 0.9742 WHOLES AND PARTS A Whole is made up of multiple Parts, which th...
6 0.9737 MAKE COMPROMISE Two (or more) people (the Parties, also encoda...
7 0.9729 SOCIAL EVENT INDIVIDUALS This frames describes a social event where the...
8 0.9725 CO-ASSOCIATION Two or more individuals have a relationship by...
9 0.9725 PUBLIC SERVICES This frame concerns permanent organizations (t...
10 0.9716 BE IN AGREEMENT ON ASSESSMENT The Cognizers have a similarity (or dissimilar...

Table 2: 10 most similar frames for FRIENDLY OR HOSTILE frame using frame embeddings.

this approach. The input for the SVM-based ap-
proach is the concatenated vector of individual lex-
ical units.

We provide results for another baseline ap-
proach where we use the same architecture (§4.1)
with random initialization for frame/FE embed-
dings.

5.4 Training
Given a noun compound, we get candidate labels
using FrameNet mapping. We compute scores for
candidate labels and compare them with the tar-
get to compute loss value. We minimize categori-
cal cross-entropy with stochastic gradient descent
(with momentum). Frame/FE embedding layer
remains fixed (non-trainable) for the initial few
epochs. For stopping criteria, we monitor perfor-
mance on the validation set.

5.5 Evaluation
We report weighted Precision, Recall, and F1-
score for our experiments. The weight values for
each label is in proportion to the number of test
examples for the label. Following is a formula for
computing (weighted) precision:

Precision =
∑
l

Pl ∗
Nl

N
(5)

Pl =
TPl

TPl + FPl
(6)

where, Pl is the precision score, TPl is the number
of true-positives and FPl is the number of false-
positives for a label l. Nl is the number of instances
with label l in the test set, andN is the total number
of instances in a test set.

The above metrics are based on the top predic-
tion. We also report accuracy at k, which treats
a prediction as a true prediction if the correct la-
bel is in top k predicted labels. We report (micro-
averaged) accuracy, computed using the following
formula:

Acc =
No. of correctly classified instances

Total instances in test-test
(7)

We compute all of these metrics for frame and
frame element independently. We use the Scikit-
learn library (Pedregosa et al., 2011) to compute
all of these metrics.

6 Results and Analysis

The reported results are averaged across 5-fold
cross-validation. We define a subset of all test sam-
ples, whose output label does not have any samples
in the training set, as unseen-set. In a fold (of D1)
with 310 test samples, the following are the statis-
tics about the “unseen set”: (1) 30 unique frames,
covering 32 test samples, (2) 75 unique FEs, cover-
ing 82 test samples. These cases are challenging to
handle. Our prediction in continuous space helps
in such cases, as the target space embeds the labels.

Table 3 reports the performance of the baselines
compared to our system for frame prediction on
the entire test-set. Our system beats the random
baseline and SVM model across all metrics by a
significant margin. Similarly, as observed from
Table 4, it can be seen that frame prediction on
the “unseen” set improvises over the random base-
line in both the cases, viz., WITH and WITHOUT
frame embeddings. The performance improvement
is quite significant over both the datasets (D1 and
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D1 D1+D2
P R F P R F

Random baseline 23.99 53.04 33.04 24.88 53.29 33.92
SVM 64.45 69.45 64.81 66.64 71.86 67.16
WITHOUT frame embedding 76.81 77.13 75.70 78.13 78.26 76.67
WITH frame embeddings 77.05 76.90 75.68 78.67 78.14 76.59

Table 3: Performance of our approach for frame prediction compared to the baseline approach on test set from D1
and D1+D2 datasets. (P: Precision@1; R: Recall@1; F: F1-score@1)

D1 D1+D2
P R F P R F

Random baseline 17.68 51.83 26.37 23.08 47.88 31.15
WITHOUT frame embedding 40.38 38.42 39.07 41.29 42.42 40.82
WITH frame embeddings 46.83 43.75 44.63 48.25 44.98 45.78

Table 4: Comparison of our approach for frame prediction with random prediction baseline on examples with
unseen-set, achieving zero-shot learning for frame prediction. (P: Precision@1; R: Recall@1; F: F1-score@1)

D1+D2). We attribute the performance improve-
ment in both cases to the fact that our model cap-
tures frame semantics for a frame in a continuous
space, better than the baseline metrics. However,
as seen in Table 3, the model which tries to predict
WITHOUT frame embeddings shows comparable
results with the model which predicts WITH frame
embeddings. This marginal improvement does not
seem to be significant, and the results for both these
cases are almost similar. Eventually, with the im-
provement in dataset size, we expect the system
with frame embeddings to perform better than the
system without frame embeddings.

We discuss the task of frame prediction above
and present our results for frame element prediction
here. As it can be observed from Table 5, random
baseline and SVM based models are outperformed
for the task of frame element prediction as well,
when compared with the results of our methodol-
ogy. The improvements over both datasets (D1 and
D1+D2) are at least 5% (D1+D2/SVM). With the
extended dataset (D1 + D2), the performance of our
approach shows an improvement across all three
(precision, recall and f-score) measures. In Table
3, for frame prediction, we observe an increase in
the stronger baseline score (SVM) when the ex-
tended dataset is used. However, we observe that
our results for frame element prediction show that
the model which uses frame embeddings is signifi-
cantly outperformed by the model which does not
use frame embeddings. Upon manual analysis of

our train set, we find that our datasets have multiple
cases where the number of examples per frame ele-
ment is very few (sometimes even 1, as discussed
below). This results in a data skew where the sam-
ple would either be used for training or testing, thus
rendering the model either untrained for that test
case, or no testing of the model trained for that
single frame element. In Table 6, we see that the
random baseline outperforms our method because
of the data skew discussed here. There are multiple
frame elements that are present in the unseen test
data for which the model has not been trained at
all. We do not report SVM performance in Table 6
and Table 4, since the precision, recall, and f-score
for SVM were all 0. This performance can be at-
tributed to the fact that SVM does not perform well
with unseen examples, and in this case, does not
perform at all.

For frame element prediction, in Table 5, we
observe that the extended dataset helps improve
the over quality of predictions with an improved
score for each approach, including the baseline.
These results signify that the dataset extension does
indeed help the task of NC interpretation.

In Figure 3, we see that the average number of
candidate FEs for a test sample is only 26. Without
even a single training example, our system is able
to correctly predict 51.22% (more than half) of un-
seen samples among the top-7 predictions, which
is higher than the top-1 accuracy of any baseline
approach on the complete test-set. With an increase



2909

D1 D1+D2
P R F P R F

Random baseline 13.75 9.68 11.36 14.48 10.20 11.97
SVM 43.99 49.13 43.73 46.55 50.85 45.14
WITHOUT frame element embedding 49.42 52.14 49.28 51.13 54.08 50.29
WITH frame element embeddings 48.18 48.50 46.61 50.47 50.23 49.73

Table 5: Performance of our approach for frame element prediction compared to the baseline approach on test set
from D1 and D1+D2 datasets. (P: Precision@1; R: Recall@1; F: F1-score@1)

D1 D1+D2
P R F P R F

Random baseline 13.28 10.35 11.64 15.36 9.26 11.56
WITHOUT frame element embedding 2.43 2.33 2.36 3.45 2.53 2.67
WITH frame element embeddings 5.05 4.96 4.70 5.23 5.23 5.28

Table 6: Comparison of our approach for frame element prediction with random prediction baseline on examples
with unseen-set. (P: Precision@1; R: Recall@1; F: F1-score@1)

1 2 3 4 5 6 7 8 9 10
Top-k

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 a
t k

WITHOUT FE embeddings (ALL)
WITH FE embeddings (ALL)
WITHOUT FE embeddings (UNSEEN)
WITH FE embeddings (UNSEEN)

Figure 3: Accuracy@k for frame element prediction
(WITH and WITHOUT frame element embeddings; on
full test set and unseen-set)

in k, the margin between the performance of our
system and baseline remains nearly the same on the
whole test set. However, on unseen labels, the sys-
tem with FE embeddings significantly outperforms
the baseline, with an increase in k.

Overall, we observe a significant improvement
in results with the help of our method. We also
show that our extended dataset does help improve
the performance of models in both cases.

7 Conclusion and Future Work

In this paper, we proposed a novel method for using
FrameNet for NC interpretation in a continuous

space. We use FrameNet mappings (word to frame
and frame to frame element) to prune our search
space. Our approach – prediction in continuous
space – outperforms the random baseline and a
stronger baseline approach. We show that the label
embeddings generated using our approach help in
the generalisation over unseen labels.

We annotated more noun compounds and anal-
ysed the issue in finding frame and frame elements.
We create and release a tool that assists annotators
in frame identification, for further research. We
also show that extending the dataset created with
our tool improves the system performance. Our ex-
periments evaluate our proposed method on a small
annotated dataset compared to the overall number
of labels. We extend this existing dataset by anno-
tating more NCs for various labels. Our study on
the coverage issue for the annotation process helps
develop a tool that assists the annotators in find-
ing an appropriate frame. We provide promising
results for the task of frame prediction. We analyse
our results and discuss them in detail with respect
to both frame and frame element prediction tasks.

In the future, we aim to find other ways of using
FrameNet data for this task. We would also like
to investigate why our approach provides promis-
ing results for the task of frame prediction but not
for frame element prediction. We would like to
explore more approaches to predict the frame ele-
ments effectively. We believe that using FrameNet
embeddings can prove to be helpful for other tasks.
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Diarmuid Ó Séaghdha. 2007. Designing and evalu-
ating a semantic annotation scheme for compound
nouns. In Proc. Corpus Linguistics.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.

Ellie Pavlick, Travis Wolfe, Pushpendre Rastogi,
Chris Callison-Burch, Mark Dredze, and Benjamin
Van Durme. 2015. FrameNet+: Fast paraphrastic
tripling of FrameNet. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 408–413, Beijing, China. As-
sociation for Computational Linguistics.

https://www.aclweb.org/anthology/C98-1013
https://doi.org/10.3115/1613186.1613190
https://doi.org/10.3115/1613186.1613190
https://doi.org/10.1016/j.csl.2014.09.007
https://doi.org/10.1016/j.csl.2014.09.007
https://doi.org/10.3115/980451.980862
https://doi.org/10.3115/980451.980862
https://doi.org/10.3115/980451.980862
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.18653/v1/W17-2618
https://doi.org/10.18653/v1/W17-2618
https://doi.org/10.18653/v1/W17-2618
https://doi.org/10.3115/1621969.1621987
https://arxiv.org/abs/1707.01476
https://arxiv.org/abs/1707.01476
https://www.aclweb.org/anthology/W15-0122
https://www.aclweb.org/anthology/W15-0122
https://www.aclweb.org/anthology/W15-0122
https://www.aclweb.org/anthology/P16-3011
https://www.aclweb.org/anthology/P16-3011
https://www.aclweb.org/anthology/D18-1178
https://www.aclweb.org/anthology/D18-1178
https://doi.org/10.1111/j.1749-6632.1976.tb25467.x
https://doi.org/10.1111/j.1749-6632.1976.tb25467.x
https://www.aclweb.org/anthology/S13-2025
https://www.aclweb.org/anthology/S13-2025
https://doi.org/10.18653/v1/p19-1568
https://doi.org/10.18653/v1/p19-1568
https://www.aclweb.org/anthology/N04-1016
https://www.aclweb.org/anthology/N04-1016
https://www.aclweb.org/anthology/N04-1016
https://doi.org/10.1017/s1351324913000065
https://doi.org/10.1017/s1351324913000065
http://ucrel.lancs.ac.uk/publications/cl2007/paper/265_Paper.pdf
http://ucrel.lancs.ac.uk/publications/cl2007/paper/265_Paper.pdf
http://ucrel.lancs.ac.uk/publications/cl2007/paper/265_Paper.pdf
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.3115/v1/P15-2067
https://doi.org/10.3115/v1/P15-2067


2911

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Girishkumar Ponkiya, Rudra Murthy, Pushpak Bhat-
tacharyya, and Girish Palshikar. 2020. Looking in-
side noun compounds: Unsupervised prepositional
and free paraphrasing. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 4313–4323, Online. Association for Compu-
tational Linguistics.

Girishkumar Ponkiya, Kevin Patel, Pushpak Bhat-
tacharyya, and Girish K Palshikar. 2018a. Towards
a standardized dataset for noun compound interpre-
tation. In Language Resources and Evaluation Con-
ference, Miyazaki, Japan.

Girishkumar Ponkiya, Kevin Patel, Pushpak Bhat-
tacharyya, and Girish K Palshikar. 2018b. Treat us
like the sequences we are: Prepositional paraphras-
ing of noun compounds using LSTM. In The 27th
International Conference on Computational Linguis-
tics (COLING 2018), pages 1827–1836, Santa Fe,
New-Mexico, USA.

Barbara Rosario, Marti A. Hearst, and Charles Fill-
more. 2001. The descent of hierarchy, and selection
in relational semantics. In Proceedings of the 40th
Annual Meeting on Association for Computational
Linguistics - ACL ’02, pages 247–254. Association
for Computational Linguistics.

Stephen Tratz and Eduard Hovy. 2010. A taxonomy,
dataset, and classifier for automatic noun compound
interpretation. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 678–687.

Lucy Vanderwende. 1994. Algorithm for automatic in-
terpretation of noun sequences. In Proceedings of
the 15th conference on Computational linguistics -,
pages 782–788. Association for Computational Lin-
guistics.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge graph embedding: A survey of
approaches and applications. IEEE Trans. Knowl.
Data Eng., 29(12):2724–2743.

Beatrice Warren. 1978. Semantic patterns of noun-
noun compounds. Acta Universitatis Gothoburgen-
sis. Gothenburg Studies in English Goteborg, 41:1–
266.
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