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Natural Language Processing (NLP): Goal Perspective

Generate Human 
Language
Generation of understandable human 
language to interface with humans.
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Understand 
Human Language
A key goal of NLP is to ensure 
that machines understand 
human language.

Analyse Human 
Language

Textual analytics, extraction, 
and retrieval to analyze the 

information present in human 
language.
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Natural Language Processing (NLP): Task Perspective

Generate Human 
Language
- Machine Translation
- Text Summarization (incl. Extreme)
- Language Generation Tasks
- Image Captioning
- Audio Description & many more.
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Understand 
Human Language
- Encoding text into 
mathematical representations
- Sense Disambiguation
- Base of other NLP tasks.
- Cognitive NLP

Analyse Human 
Language

- Sentiment Analysis
- Emotion Recognition

- Entity Recognition & Linking
- Acronym/Abbreviation 

Extraction
.
.
.



Encoding Paradigm: Evolution

• 1 - hot encoding

• Term Frequency - Inverse Document Frequency (TF-IDF)

• Based on ‘term’ counts, i.e., frequency in the sentence and its frequency in the ‘document’

• Word Vectors / Embeddings

• TF-IDF does not take into account the contextual presence of the word in a document.

• Word embeddings use an unsupervised approach to project the word into an 

‘n’-dimensional space allowing vector operations for complex tasks. 

• V(King) - V(Man) + V(Woman) = V(Queen)

• Madrid:Spain::Rome:?

• However, capturing ‘semantics’ requires the true context of a word across multiple 

senses.
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Vectorization Approaches

• word2vec (Mikolov et. al., 2013)

• First implementation of embeddings words or ‘tokens’ 
given a large monolingual corpus, i.e., a document 
containing a set of sentences in a single language. 

• Significant push to the NLP research sub-area. 
• fastText (Bojanowski et. al., 2017)

• Enriched word vectors with subword information. 
• Can help tackle morphology related issues.

• Significant push to Indian language NLP, Multilingual 
approaches.

• MUSE (Conneau et. al., 2019) / VecMap (Artetxe et. al., 2019)

• Approaches to build embedding models for cross-lingual / 
bilingual word embeddings using projection 
methodologies. 
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Image source: https://kavita-ganesan.com/fasttext-vs-word2vec/ 

https://kavita-ganesan.com/fasttext-vs-word2vec/


Some more vectorization approaches

GloVe (Pennington et. al., 2014)
• Global Vectors for Word Representations: constructs a large matrix of (words x context) co-occurrence 

information, i.e., for each ‘word’ (the rows), count how frequently this word is in some “context” (the columns)
• then, factorize this matrix to yield a lower-dimensional (word x features) matrix, where each row now yields a 

vector representation for the corresponding word/token.

Flair (Akbik et. al., 2018) [post-BERT]
• Contextualized string embeddings based on character sequences taken into account during training
• Leverages the internal states of a trained character language model. 
• Distinct properties that they 

• are trained without any explicit notion of words and thus model words as sequences of characters, and 
• are contextualized by their surrounding text, meaning that the same word will have different embeddings 

depending on its contextual use.
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The Transformer Revolution: BERTology!

BERTology

• Encoders: BERT, DistilBERT, RoBERTa, ALBERT, DeBERTa, ELECTRA (discriminator), Longformer, …

• Multilingual Encoding: XLM, XLM-R, mBERT, IndicBERT, MuRIL, …

• Decoders (Autoregressive): XLNet, GPT-n, Reformer, OPT

• Decoders (Non-autoregressive): CoMMA, DisCo, CMLMC, Levenshtein Transformer, PNAT

• Encoder-Decoder: BART, PEGASUS, T5, mT5 (multilingual), mBART (multilingual), IndicBART(multilingual), 

• Contrastive Learning Objective: Sentence-BERT, Sentence-RoBERTa, …
• Siamese Network like objective function, triplet loss

• Domain-specific: FinBERT, SciBERT, SportsBERT, Legal-BERT, BioBERT…

• Language-agnostic: LASERn
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BERT (Bidirectional Encoder Representations from Transformers)
(NLPs ImageNet moment!)

BERT and BERT-like architectures belong to the family of 
autoencoding computational models that provide 
vectors/embeddings for word(s)/sentences. 

Built on top of a lot of ideas:
Semi-supervised Sequence Learning (Andrew Dai, Quoc Le)

[Learning Objective via Masking]

ELMo (Peters et. al.) [Contextual Embeddings]

ULMFiT (Howard and Ruder) [Transfer Learning]

OpenAI Transformer (Radford et. al.) [w/ Sutskever] [Decoder]

Transformer (Vaswani et. al.) [Core Model]

Enables transfer learning - prime reason for BERT use.
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Image source: Vaswani et. al. (2017)



The Transformers Architecture
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Q: How does textual information flow from 
a set of tokens to mathematical 
representation via BERT?



Input Embeddings

Input Sentence:

Tokenization:

Numericalization:

Padding:   



Positional Encoding

● As of yet, the model contains no recurrence 

and no convolution
○ in order for the model to make use of the order of 

the sequence, we must inject some information 

about the relative or absolute position of the 

tokens in the sequence

○ Add "positional encodings" to the input 

embeddings at the bottoms of the encoder and 

decoder stacks

UNIVERSITY OF SURREY

For deep dive: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/ 

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


Attention!

The Why
• Lower Computational Complexity.
• Computation of self-attention can be parallelized.
• Path length between long-range dependencies is shorter via self-attention.
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• Multi-head attention concatenates the dot-product attention computed for each attention 

head.

• Each attention head is computed based on learnable parameters Q, K, and V; which are also 

placeholders for different input matrices.

• For each input token, use its query vector (Q) to score against all the other key vectors (K)

• Sum up the value vectors (V) after multiplying them by their associated scores.



Masking: A simulated learning objective

The training objective for BERT-like language models relies 
on “predicting the masked word”. 

While computing self-attention, the learnable parameters 
are computed based on how closely was the masked word 
predicted.

Before providing input, BERT tokenization allows one to 
mask a certain %age of words from the input set of 
sentences.



Other Architectures



RoBERTa vs. BERT vs. DistilBERT
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● In BERT, masking is performed only once at 
data preparation time, and they basically take 
each sentence and mask it in 10 different 
ways.

○ At training time, the model will only see 
those 10 variations of each sentence.

● On the other hand, in RoBERTa, the masking 
is done while training.

○ Each time a sentence is incorporated in a 
minibatch, it gets its masking done 
dynamically.

○ The number of potentially different 
masked versions of each sentence is not 
bounded like in BERT.



Sentence-BERT Architecture

• Sentence-BERT introduces pooling to the token 
embeddings generated by BERT to create a fixed 
sentence embedding.

• When this network is fine-tuned on Natural 
Language Inference (NLI) data it does become 
apparent that it is able to encode the semantics of 
sentences.

• These can be used for unsupervised tasks (e.g., 
semantic textual similarity) or classification problems 
where they achieve state-of-the-art results.

• SBERT is also computationally more efficient as 
compared to BERT.
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GPT-n Architecture

• Autoregressive models are pretrained on the classic language modeling 
task. 

• Guess the next token having read all the previous ones. 

• They correspond to the decoder of the original transformer model, and a 
mask is used on top of the full sentence so that the attention heads can 
only see what was before in the text, and not what’s after.

• Although those models can be fine-tuned and achieve great results on 
many tasks, the most natural application is text generation. A typical 
example of such models is GPT.

• The key difference: No encoder block
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GPT-n: Use Cases

• The simplest way to run a trained GPT-2 is to allow it to ramble on 

its own (which is technically called generating unconditional 

samples).

• Alternatively, we can give it a prompt to have it speak about a 

certain topic (i.e.,  generating interactive conditional samples).

• In the rambling case, we can simply hand it the start token and have 

it start generating words.

• The trained model uses <|endoftext|> as its start token. 



Transfer Learning: Examples
(w/ some ongoing investigations)



Fine-Tuning for NLP Tasks: Transfer Learn

● The main benefit behind Transformers is that once 
pre-trained, Transformers can be fine-tuned for 
numerous downstream tasks and often perform 
really well out of the box. 

● This is primarily due to the fact that the 
Transformer already ‘understands’ context for a 
word which allows training to focus on learning 
how to do 
○ Question Answering
○ Language Generation
○ Named Entity Recognition
○ …
○ Anything which utilizes features from 

text/language to perform a classification or 
regression or generation task. UNIVERSITY OF SURREY

Image Source: https://www.assemblyai.com/blog/fine-tuning-transformers-for-nlp/ 

https://www.assemblyai.com/blog/fine-tuning-transformers-for-nlp/
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Neural Machine Translation (NMT)
• NMT enables the use of neural architecture to translate text from one natural language to another. 

• Statistical Machine Translation (SMT) performance was surpassed using Transformers architecture 
[BERT (Vaswani et. al., 2017)]

• Winner, SMT competition at ICON 2014 (Prabhugaonkar et. al., 2014)

• Task of translating from English, Bengali, Marathi, Tamil, and Telugu to Hindi.
• Use of Hierarchical Phrase-based SMT decoder with KenLM (language model).

• Arrival of NMT using recurrent architectures. (Bahdanu et. al., 2014; Sutsekever et. al., 2014; Luong et. al., 2015)

• State-of-the-art (SoTA) achieved using (massive) Multilingual NMT systems.
• Based on Transformers architecture. (Aharoni et. al., 2019; Costa-jussà et. al., 2022)

• Quoted in Sky News article on Facebook’s NLLB system on Evaluation using BLEU1

1Meta claims breakthrough in 'superpower' AI translation as it interprets more than 200 languages | Science & Tech News | Sky News

https://news.sky.com/story/meta-claims-breakthrough-in-superpower-ai-translation-as-it-interprets-more-than-200-languages-12646868


NMT still imperfect? – Automatic Post Editing

• Automatic Post Editing is the task of correcting machine translated 
output using various methods.

• Statistical methods (Chatterjee et al., WMT 2015; Libovický et. al., 2016)

• Neural methods (Chatterjee et al., 2018; Chatterjee et al., WMT 2020)

• Requires human post-editors to build post-editing resource by 
correcting translation output manually.

• Automatic Post Editing Shared Task Organization
• Introduced English-Marathi resource in 2022 edition.
• Introducing English-Hindi resource in 2023 edition. 
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How do you assess Translation Quality 
automatically? - Quality Estimation
• Quality Estimation is the task for automatically assessing the quality of translated output using 

various methods.
• Statistical methods / Machine Learning (Kozlova et. al., 2016) 
• Deep Neural Networks (Ranasinghe et. al., 2020) [Current SoTA]

• Requires (at least 3) human translators to build a resource where they assess the quality manually 
to generate z-score.

• Based on normalized z-score, it is a regression task to judge translation quality using any methods 
stated above.

• Quality Estimation Shared Task Organization
• Introduced English-Marathi resource in 2022 edition.
• Introducing English-Hindi resource in 2023 edition.
• Introducing English-Sinhala resource in 2023/2024 edition.
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Thank you!

 Questions?
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