# Diptesh Kanojia<sup>†,</sup>, Prashant K. Sharma<sup>◇</sup>, Sayali Ghodekar<sup>‡</sup>, Pushpak Bhattacharyya<sup>†</sup>, Gholamreza Haffari<sup>\*</sup>, & Malhar Kulkarni<sup>†</sup> <sup>‡</sup>University of Surrey, United Kingdom; <sup>♣</sup>IITB-Monash Research Academy, India; <sup>†</sup>IIT Bombay, India; <sup>\*</sup>Monash University, Australia; <sup>◆</sup>Hitachi CRL, Japan; & <sup>‡</sup>RingCentral, India <sup>†</sup>{diptesh,pb,malhar}@iitb.ac.in, <sup>◇</sup>prashaantsharmaa@gmail.com <sup>‡</sup>sayalighodekar26@gmail.com , <sup>\*</sup>gholamreza.haffari@monash.edu

#### Key Questions

- "Can cognitive features be used to help the task of Cognate Detection?"
- "Using gaze features collected on a small set of data points, can we predict the same features on a larger set of data points to alleviate the need for collecting gaze data?"

### Introduction

- Cognates are word pairs, across languages, having a common etymological origin. For example, the French and English word pair, Liberté - Liberty, reveals itself to be a cognate through orthographic similarity.
- Automatic Cognate Detection (ACD) is a well-known task, explored for many languages; and has shown to help NLP sub-tasks of Cross-lingual Information Retrieval, Machine Translation (MT), and Phylogenetics.
- Cognitive features have also shown to improve various NLP tasks (Mishra et. al., 2016)
- We hypothesize that gaze behaviour data from human participants can improve the performance of the cognate detection task with *cognitive features*.
- Gaze features like fixation duration, fixation counts, & saccades, help provide important insights into how humans disambiguate cognate vs. non-cognates.

#### **Dataset Statistics**

|                          | Cognates (1)        | False Friends (0)   |
|--------------------------|---------------------|---------------------|
| Kanojia et. al. $(2020)$ | 15726               | 5826                |
| $\mathbf{D1}$            | $\boldsymbol{5826}$ | $\boldsymbol{5826}$ |
| D2                       | 100                 | 100                 |

We extract 100 pairs, at random, from each of the positive and negative labels for collecting gaze behaviour data, to construct what we call "D2".

# **Cognition-aware Cognate Detection**

## Motivation

Consider a scenario where an NLP task comes across a false friend pair; For e.g., the word "shikhshA" in Hindi and Marathi.

- False friends are similarly spelt words that have distinct, unrelated meanings.
- Good quality cross-lingual models need data, and Hindi and Marathi are data scarce.
- Hence, we obtain **gaze behaviour data** over a small dataset of cognates & false-friends.

|                                 |           |               |      | Res   | ult  | ts    |       |      |      |      |                          |
|---------------------------------|-----------|---------------|------|-------|------|-------|-------|------|------|------|--------------------------|
|                                 | P R       | F             | Р    | R     | F    | Р     | R     | F    | Р    | R    | F                        |
| Feature Set $\rightarrow$       | Phon      | etic          |      | WLS   |      |       |       |      |      |      |                          |
| Rama et. al., 2016 (D1+D2)      | 0.71 0.69 | 0.70          | _    | _     | _    |       |       |      |      |      |                          |
| Kanojia et. al., 2019 (D1+D2)   |           | -             | 0.76 | 0.72  | 0.74 |       |       |      |      |      |                          |
| Feature Set $\rightarrow$       | XLI       | M             | ]    | MUSE  | 1    | V     | ecMa  | ap   |      |      |                          |
| Linear SVM (D1+D2)              | 0.83 0.71 | 0.77          | 0.72 | 0.68  | 0.70 | 0.70  | 0.65  | 0.67 |      |      |                          |
| LogisticRegression (D1+D2)      | 0.85 0.74 | 0.79          | 0.80 | 0.71  | 0.75 | 0.70  | 0.66  | 0.68 |      |      |                          |
| FFNN (D1 + D2)                  | 0.82 0.84 | 0.83          | 0.83 | 0.79  | 0.81 | 0.75  | 0.76  | 0.75 |      |      |                          |
| Feature Set $\rightarrow$       | XLM+      | Gaze          | MU   | SE+C  | faze | VecN  | /lap+ | Gaze |      |      | Gaze                     |
|                                 | 0.81 0.69 | 0.75          | 0.72 | 0.73  | 0.72 | 0.70  | 0.75  | 0.72 | 0.77 | 0.76 | 0.76                     |
| LogisticRegression (D2)         | 0.84 0.75 | 6 0.79        | 0.76 | 0.72  | 0.74 | 0.81  | 0.71  | 0.76 | 0.80 | 0.75 | 0.77                     |
| FFNN (D2)                       | 0.83 0.85 | <b>0.84</b>   | 0.83 | 0.78  | 0.80 | 0.86  | 0.83  | 0.84 | 0.81 | 0.71 | 0.76                     |
| Predicted Gaze Features On      | n D1 (11  | 652 s         | samp | oles) | and  | l Col | lect  | ed G | laze | Feat | ures on D2 (200 samples) |
| Feature Set $\rightarrow$       | XLM+      | Gaze          | MU   | SE+C  | laze | VecN  | /lap+ | Gaze |      |      | Gaze                     |
| FFNN (D1 + D2)                  | 0.84 0.88 | 8 <b>0.86</b> | 0.85 | 0.78  | 0.81 | 0.83  | 0.85  | 0.84 | 0.77 | 0.76 | 0.76                     |
| FFNN (D1) [Only Predicted Gaze] | 0.83 0.84 | 0.83          | 0.82 | 0.79  | 0.80 | 0.80  | 0.86  | 0.83 | 0.76 | 0.77 | 0.76                     |

# **Data Annotation Screen**

| Cognates                 | बिद्ध | विद्ध                                    |
|--------------------------|-------|------------------------------------------|
| किंदा भेदा सा तेशा द आ   |       | हल्ल्यात वेध घेतली गेल्याने घायाळ झालेला |
| णिकारी बिंद शिकार के गाम | गरना  | शिकारी विद्ध श्वापदाजवळ पोहोचला.         |

# Gaze Behaviour Analysis

• Gaze data is collected with the help of nine native Marathi speakers, who can understand Hindi. • The pecision of similarity annotation lies between 98% to 99.5% for individual annotators.

• Out of the 1800 annotations (9 annotators/200word-pairs), only 40 incorrect annotations. • We observe *statistically significant* fixation

duration amongst all participants (cognates fixated for **1.3 times** more than false-friends.)

# **Predicting Gaze Fixation**



• We harness cross-lingual embeddings and gaze-based features to help the cognate detection task, for the Indian languages, Hindi & Marathi. • To answer our key questions, "Yes." & "Yes!".





भारतीय भाषा प्रौद्योगिकी

#### **Observations**

• On D1+D2, using the XLM-based features, we observe an improvement of 9% over the stronger baseline and 13% over the system by Rama et. al. • It can be seen that MUSE and VecMap based features also perform better on the combined dataset. In terms of both precision and recall, cross-lingual features are shown to outperform all the baseline systems.

• Appending gaze features to our best reported system help our model **outperform it by 3%**. • Cognate pair "*uTpann*" (Hindi) - "*uTpADiTa*" (Marathi) (both meaning manufactured) is classified correctly by this system, but incorrectly by baselines, and cross-lingual systems.

• We were hopeful that the participants would focus only on important contextual clues and not the stop words. However, the sample points are not enough to concretely discuss this aspect.

#### Conclusion

# Full Paper

For additional results, see our paper at: Paper Link

Dataset & Code Repository

https://www.cfilt.iitb.ac.in/eacl2021diptesh



