# Cognition-aware Cognate Detection

Diptesh Kanojia | Prashant K. Sharma | Sayali Ghodekar | Pushpak Bhattacharyya | Gholamreza Haffari | Malhar Kulkarni













An Indian-Australian research partnership

Presentation for EACL 2021 (19th-23rd April) || "Cognition-aware Cognate Detection"

## **Cognate Detection : Motivation**

- Cognates represent a large chunk of the shared vocabulary among language pairs.
- We conduct this experiment for an Indian language pair Hindi - Marathi, which is a known closely related pair.
- Previously, the task of Cognate Detection has shown to help the downstream tasks of Machine Translation via word alignment (Kondrak, 2005)
- Cognitive Psycholinguistic based features have also shown to improve various NLP tasks (Mishra et. al., 2016)



## Cognition Aware Cognate Detection [1 /2]

#### Problem Statement

**Key Question:** Do cognitive (gaze) features help in cognate detection ?

#### GOALS

- Collect gaze behaviour data for the task of identifying cognates vs. non-cognates for a sample set.
- Extract gaze features from the collected gaze data.
- **Predict gaze features** for the unseen samples.
- Perform the task of cognate detection over both sets.

#### <u>INPUT</u>

## **Cognate Challenge Dataset** (Kanojia et. al., 2020) **Traditional features** Gaze data OUTPUT Cognates (1) / Non-Cognates (0)

## Cognition Aware Cognate Detection [2 / 2]

#### • Vector Representation:

- W1,W2, D1, D2, E1, E2
- From Cognate Challenge Dataset
  (Kanojia et. al., 2020)
- Traditional features
  - Phonetic, Lexical etc.

#### • Gaze Features

- g1, g2, g3,....g<sub>n</sub>
- $\circ$  from collected data

## 

INPUT

## **Sub-Problem: Predicting Cognitive Features**

#### **Problem Statement**

#### GOAL

- Using the collected gaze data, predict gaze features for the unseen samples of cognates and non-cognates.
- Vector Representation:
  W1,W2, D1, D2, E1, E2
- Traditional features
  - Phonetic, Lexical etc.
- Gaze Features )
  - $\circ$  g1, g2, g3,.....g<sub>n</sub>
  - from collected data

#### <u>INPUT</u>

Vector Representation + Traditional features + Gaze Features (from collected data)

#### <u>OUTPUT</u>

Gaze Features (on unseen data)

G1, G2, G3,.....G<sub>n</sub>

## **Literature Survey**



## **Dataset Collection Setup**

#### Annotator Info

- Nine annotators
- Native Marathi speakers (who understand Hindi)
- Education Level
  - At least College Graduates
- Experiments conducted with a host always at the side
- SR Research EyeLink 1000 (used at 500 Hz sampling rate)

#### To verify the annotation quality we observed two key aspects

- Annotation Precision
  (both individual and aggregate)
- Inter Annotator Agreement among our nine annotators (Fleiss Kappa Score)

## **Dataset Collection**

GOAL:

• Given cognate, and non-cognate pair along with their context (definition and example) collect gaze features for two hundred samples (100 +ver, 100 -ve).



### **Annotator Precision and Inter-annotator Agreement**

| Annotator | A1   | A2    | A3    | <b>A</b> 4 | A5    | <b>A</b> 6 | A7    | <b>A</b> 8 | A9   | Average |
|-----------|------|-------|-------|------------|-------|------------|-------|------------|------|---------|
| Precision | 0.99 | 0.975 | 0.965 | 0.995      | 0.995 | 0.99       | 0.975 | 0.99       | 0.98 | 0.9839  |

| Statistical<br>Significance | Value    |
|-----------------------------|----------|
| P-bar                       | 0.005272 |
| P-bar-e                     | 23.7219  |
| Fleiss Kappa                | 1.0002   |

#### Cohen's Kappa vs. Fleiss' Kappa

Statistical literature observes that Cohen's kappa is **applicable to two annotators** 

There are studies which use Cohen's kappa for multiple annotators by computing a mean.

Fleiss' kappa, however, **allows multiple annotators**, and categorical values to be taken into account.

We use Fleiss' Kappa for statistical significance.

## Cognate Detection with Gaze Features

### **<u>Proposed Model 1</u>** : Neural Model for Cognition aware Cognate Detection



## **Results**

|                                                                                               | Р        | R     | F    | Р         | R     | F    | Р           | R      | F    | Р    | R    | F    |
|-----------------------------------------------------------------------------------------------|----------|-------|------|-----------|-------|------|-------------|--------|------|------|------|------|
| Feature Set $\rightarrow$                                                                     | Phonetic |       |      | WLS       |       |      |             |        |      |      |      |      |
| Rama et. al., 2016 (D1+D2)                                                                    | 0.71     | 0.69  | 0.70 | -         | -     | -    |             |        |      |      |      |      |
| Kanojia et. al., 2019 (D1+D2)                                                                 | -        | -     | -    | 0.76      | 0.72  | 0.74 |             |        |      |      |      |      |
| Feature Set $\rightarrow$                                                                     | XLM      |       |      | MUSE      |       |      | 7           | VecMaj | ,    |      |      |      |
| Linear SVM (D1+D2)                                                                            | 0.83     | 0.71  | 0.77 | 0.72      | 0.68  | 0.70 | 0.70        | 0.65   | 0.67 |      |      |      |
| LogisticRegression (D1+D2)                                                                    | 0.85     | 0.74  | 0.79 | 0.80      | 0.71  | 0.75 | 0.70        | 0.66   | 0.68 |      |      |      |
| FFNN (D1 + D2)                                                                                | 0.82     | 0.84  | 0.83 | 0.83      | 0.79  | 0.81 | 0.75        | 0.76   | 0.75 |      |      |      |
| Feature Set $\rightarrow$                                                                     | XLM+Gaze |       |      | MUSE+Gaze |       |      | VecMap+Gaze |        |      | Gaze |      |      |
| Linear SVM (D2)                                                                               | 0.81     | 0.69  | 0.75 | 0.72      | 0.73  | 0.72 | 0.70        | 0.75   | 0.72 | 0.77 | 0.76 | 0.76 |
| LogisticRegression (D2)                                                                       | 0.84     | 0.75  | 0.79 | 0.76      | 0.72  | 0.74 | 0.81        | 0.71   | 0.76 | 0.80 | 0.75 | 0.77 |
| FFNN (D2)                                                                                     | 0.83     | 0.85  | 0.84 | 0.83      | 0.78  | 0.80 | 0.86        | 0.83   | 0.84 | 0.81 | 0.71 | 0.76 |
| Predicted Gaze Features On D1 (11652 samples) and Collected Gaze Features on D2 (200 samples) |          |       |      |           |       |      |             |        |      |      |      |      |
| Feature Set $\rightarrow$                                                                     | X        | LM+Ga | aze  | MU        | JSE+G | aze  | Vec         | Map+C  | Gaze |      | Gaze |      |
| FFNN (D1 + D2)                                                                                | 0.84     | 0.88  | 0.86 | 0.85      | 0.78  | 0.81 | 0.83        | 0.85   | 0.84 | 0.77 | 0.76 | 0.76 |
| FFNN (D1) [Only Predicted Gaze]                                                               | 0.83     | 0.84  | 0.83 | 0.82      | 0.79  | 0.80 | 0.80        | 0.86   | 0.83 | 0.76 | 0.77 | 0.76 |

## **Model 1: Observation**

- Our experiments shows that Introducing Gaze Features, results in improving cognate detection accuracy.
- Even on limited samples (1800 samples), our model shows improvement for the task of cognate detection
- Leveraging context information using neural architecture can help improving cognate detection accuracy.



# Cognitive Features Prediction

# <u>Proposed Model 2</u>: Neural Model for Cognitive Feature prediction



### **Model 1: Results**



## **Results**

|                                                                                               | Р        | R     | F    | Р         | R             | F    | Р           | R      | F    | Р    | R    | F    |
|-----------------------------------------------------------------------------------------------|----------|-------|------|-----------|---------------|------|-------------|--------|------|------|------|------|
| Feature Set $\rightarrow$                                                                     | Phonetic |       |      | WLS       |               |      |             |        |      |      |      |      |
| Rama et. al., 2016 (D1+D2)                                                                    | 0.71     | 0.69  | 0.70 | -         | -             | -    |             |        |      |      |      |      |
| Kanojia et. al., 2019 (D1+D2)                                                                 | -        | -     | -    | 0.76      | 0.72          | 0.74 |             |        |      |      |      |      |
| Feature Set $\rightarrow$                                                                     | XLM      |       |      | MUSE      |               |      | 7           | VecMaj | ,    |      |      |      |
| Linear SVM (D1+D2)                                                                            | 0.83     | 0.71  | 0.77 | 0.72      | 0.68          | 0.70 | 0.70        | 0.65   | 0.67 |      |      |      |
| LogisticRegression (D1+D2)                                                                    | 0.85     | 0.74  | 0.79 | 0.80      | 0.71          | 0.75 | 0.70        | 0.66   | 0.68 |      |      |      |
| FFNN (D1 + D2)                                                                                | 0.82     | 0.84  | 0.83 | 0.83      | 0.79          | 0.81 | 0.75        | 0.76   | 0.75 |      |      |      |
| Feature Set $\rightarrow$                                                                     | XLM+Gaze |       |      | MUSE+Gaze |               |      | VecMap+Gaze |        |      | Gaze |      |      |
| Linear SVM (D2)                                                                               | 0.81     | 0.69  | 0.75 | 0.72      | 0.73          | 0.72 | 0.70        | 0.75   | 0.72 | 0.77 | 0.76 | 0.76 |
| LogisticRegression (D2)                                                                       | 0.84     | 0.75  | 0.79 | 0.76      | 0.72          | 0.74 | 0.81        | 0.71   | 0.76 | 0.80 | 0.75 | 0.77 |
| FFNN (D2)                                                                                     | 0.83     | 0.85  | 0.84 | 0.83      | 0.78          | 0.80 | 0.86        | 0.83   | 0.84 | 0.81 | 0.71 | 0.76 |
| Predicted Gaze Features On D1 (11652 samples) and Collected Gaze Features on D2 (200 samples) |          |       |      |           |               |      |             |        |      |      |      |      |
| Feature Set $\rightarrow$                                                                     | X        | LM+Ga | aze  | MU        | J <b>SE+G</b> | aze  | Vec         | Map+C  | Gaze |      | Gaze |      |
| FFNN (D1 + D2)                                                                                | 0.84     | 0.88  | 0.86 | 0.85      | 0.78          | 0.81 | 0.83        | 0.85   | 0.84 | 0.77 | 0.76 | 0.76 |
| FFNN (D1) [Only Predicted Gaze]                                                               | 0.83     | 0.84  | 0.83 | 0.82      | 0.79          | 0.80 | 0.80        | 0.86   | 0.83 | 0.76 | 0.77 | 0.76 |

## **Future Investigation**



## **Future Work**

- Cognate Detection using predicted gaze features on full corpus (Kanojia et. al. 2020)
- Multi-Task Learning to predict gaze features and use it to predict a label for whether the words are cognates or not.
- Leveraging richer context representation for task of cognate detection.
- Predicting cognitive features for major NLP tasks: eg. Sentiment Analysis, Sarcasm Detection etc.
- Leveraging cognitive features for the task of word sense disambiguation.

### References

- Frunza, Oana, and Diana Inkpen. "Semi-supervised learning of partial cognates using bilingual bootstrapping." Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics. 2006.
- Sáchez-Casas, Rosa M., José E. García-Albea, and Christopher W. Davis. "Bilingual lexical processing: Exploring the cognate/non-cognate distinction." European Journal of Cognitive Psychology 4.4 (1992): 293-310.
- Rama, Taraka, et al. "Are automatic methods for cognate detection good enough for phylogenetic reconstruction in historical linguistics?." arXiv preprint arXiv:1804.05416 (2018).
- Mulloni, Andrea, and Viktor Pekar. "Automatic Detection of Orthographics Cues for Cognate Recognition." LREC. 2006.
- Ciobanu, Alina Maria, and Liviu P. Dinu. "Automatic detection of cognates using orthographic alignment." Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2014.
- Kondrak, Grzegorz. "Identifying cognates by phonetic and semantic similarity." Second Meeting of the North American Chapter of the Association for Computational Linguistics. 2001.

## **Thank You!**

Presentation for EACL 2021 (19th-23rd April) || "Cognition-aware Cognate Detection"