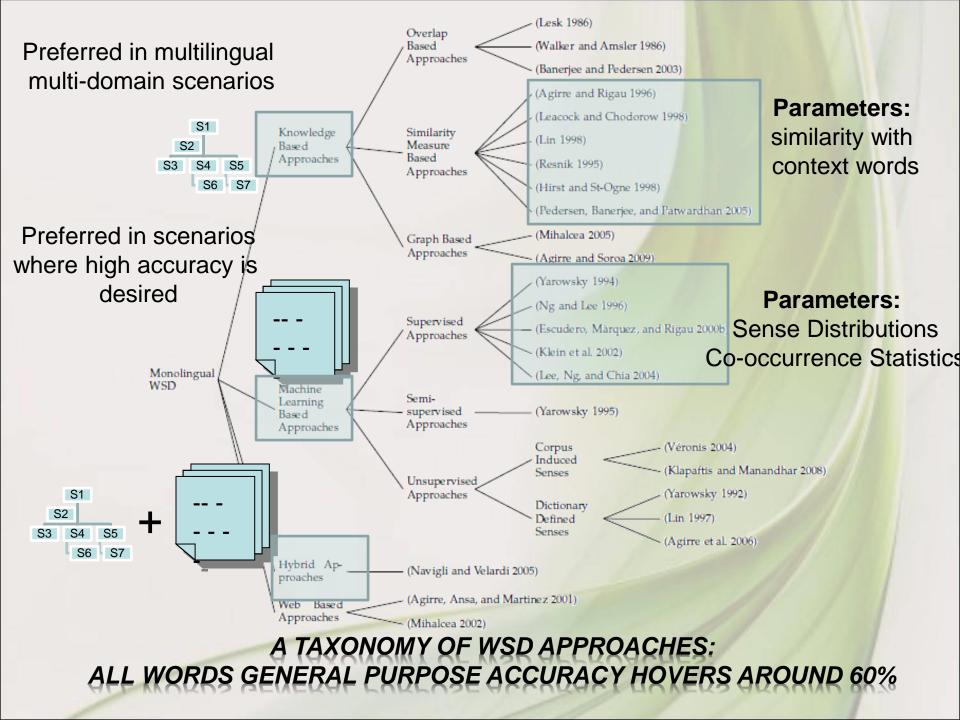
More than meets the eye: Study of Human Cognitionin Sense Annotation

> Salil Joshi, Diptesh Kanojia and Pushpak Bhattacharyya, IIT Bombay (NAACL 2013, Atlanta, 11 June, 2013)


Motivation

WSD: strong AI or weak AI?

- Strong AI: mimic human processing
- Both structurally and functionally
 - Ape whatever the human does

- Weak AI: capture only the functionality of human processing
- Has been very successful in many tasks at which humans are good

However, consistently reported low accuracy for WSD®

Should we change the approach?

 Maybe WSD should be done the way humans disambiguate?

 Study human cognitive process involved in doing sense disambiguation

Insights from our earlier work*

Humans need Context for Annotation

Tagging without context is often erroneous, and also a cognitive load due to uncertainty

In supervised WSD, machines rely primarily on prior sense distribution probability

Machines seem to be able to do best with just *P(S/W)*; context per se does not seem important

*Paper titled "A Study of the Sense Annotation Process: Man v/s Machine" published in GWC 2012

Questions

Human Cognition in Sense Annotation

• What are the cognitive sub-processes associated with the human sense annotation task?

Lexicographer's Difficulty

• Which classes of words are more difficult to disambiguate and why?

Experimental Setup

Eye-tracking

Fixation

- Eye pause at a certain spot
- First data point
- Where someone is focusing, for how long and possibly why

Saccades

- Second data point
- Eye gaze movement from one position to another

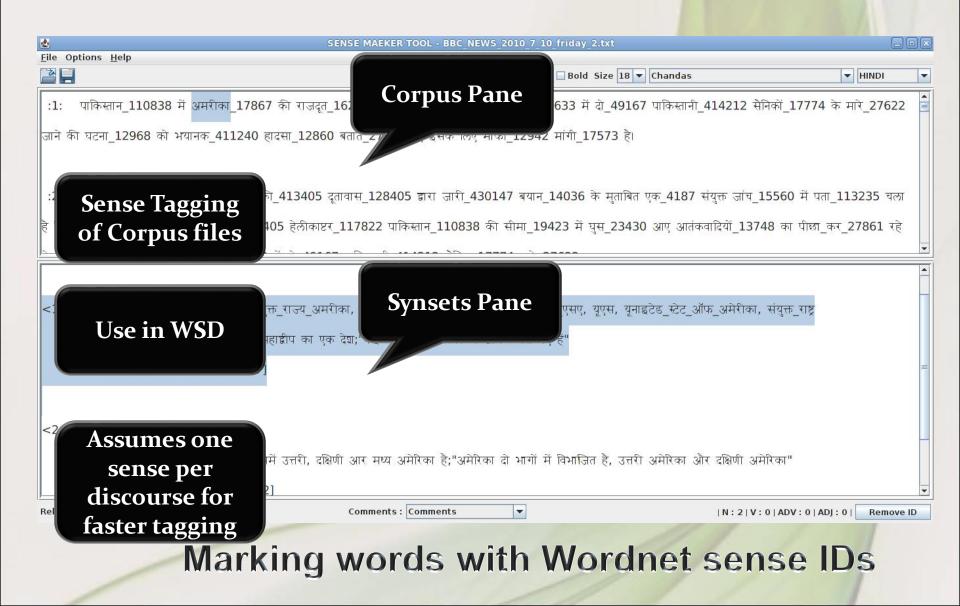
Scan Path

Combination of fixations and saccades

Techniques for eye-tracking

Most comfortable technique to measure gaze based on infrared light

A bit more complicated way to measure gaze using electric potential around the eye.


The eye tracking glasses are used for broad range of mobile eye tracking studies.

The ergonomic chin rest eye tracking device for high speed and accurate measurements with a large visual field.

Image courtesy: www.smivision.com

Sense marker tool

Facts and Figures

- 2000 words used for experimentation
- Analysis done on data for open class words (nouns, verbs, adverbs and adjectives)
- Data from 6 lexicographers (3 skilled, 3 unskilled) collected
- Annotators used Sense-marker tool for tagging the word senses
- Gaze patterns analyzed

An example of eye movement during sense marking

8 SEN	ISE MAEKER TOOL - BBC NEWS 2010 7 10 friday 2.txt	
Eile Options Help		
별 등	🗌 Edit Word 🗌 Bold Size 18 💌 Chand	das 💌 HINDI 💌
:1: पाकिसान_110838 में अ न्त्रि: 17867 की प्रजयूत_16	<u>211 ने नार्वालेना 12229</u> की क <u>ार्यक</u> 23 में दो_49167 पाकिस	स्तानी_414212 सेनिकों_17774 के मारे_27622
जाने की पटना_12968 को भयानक करा240 हादसा_12860 ब	ताते_27125 हुए इसके लिए माफी_12942 मांगी_17573 है।	America: USA or Nort
	/ /	America?
:2: पाविका 110838 स्थित 42770 अमरीकी 413495 इतार	वास_128405 ज्ञारा जारी_430147 बयान_14036 के मुताबित एक_41	187 संयुक्त जांच_15560 में पता_113235 चला
	17822 पाकिस्तान_110838 के सीमा_19423 में पुस_23430 आए 3	
	/	-
<1> WORDS :: अमरीका, संयुक्त_राज्य_अमरीक	त, संयुक्त_राज्य_अमेरिक, यू_एस_ए, यू_एस, यूएसए, यूएस, यूनाइटेड_स्टे	
GLOSS :: उत्तरी अमेरिक मल्लाजेन कर के	। सः "नर्द भारतीय कि म में जाकर बस गए हे" "USA"	" sense
OFFSET :: NOUN[7867]		
<2> WORDS :: अमेरिका, अमरीका		
		"North Ameri
GLOSS :: एक महाद्वाप जिसमें उत्तरी, दक्षिणी	आर मध्य अमेरिका है;"अमेरिका दो भागों में विभाजित है, उत्तरी अमेरिक	का आर दाक्षणा अमारका"
OFFCET NOUNTROOTSI		
OFFSET :: NOUN[10832]		sense

Note: Ball size indicative of the fixation time; lines are saccades

Cognitive sub-processes in sense annotation*

Hypothesis Building: During annotation, the lexicographer makes initial hypotheses regarding meaning and domain of a word (T_{hypo})

Clue-word Searching: Consequently he/she looks for contextual clues around the word to narrow down on 1 or at most 2 of the initial hypotheses

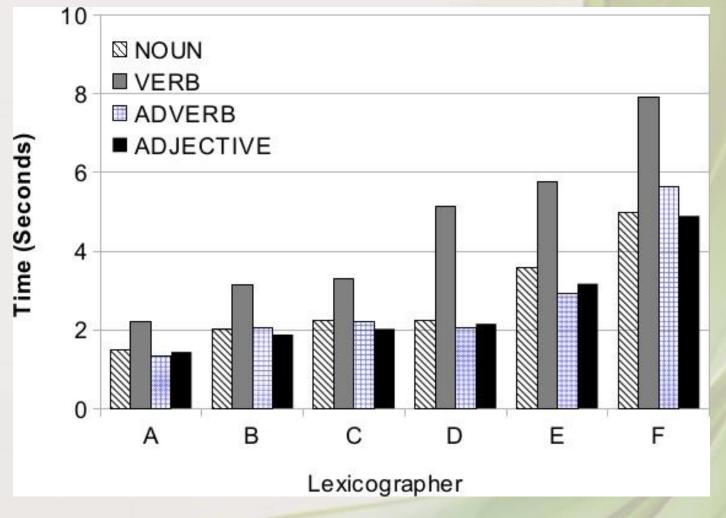
Gloss Matching: The lexicographer then scans the wordnet candidate senses of the word for synset words and gloss to map their hypothesis to one of the senses (T_{gloss})

 $T_{total} = T_{hypo} + T_{clue} + T_{aloss}$

*as discussed with the lexicographers, arguably our Most important contributionn

(T_{clue})

Results


Lexicographer	Time Taken (seconds)			
	T _{hypo}	T_{clue}	T_{gloss}	T_{total}
Skilled	0.33	0.74	1.16	2.24
Unskilled	0.74	1.56	4.44	6.75

Time variations between skilled and unskilled lexicographers

		Unskilled lexicographers (seconds)			Skilled lexicographers !(seconds)				
	Degree of polysemy	T _{hypo}	T _{clue}	T_{gloss}	T_{total}	T _{hypo}	T _{clue}	T_{gloss}	T _{total}
लाना (laana – to bring)	4	0.63	0.8	5.2	6.63	0.31	1.2	1.82	3.3
करना (karanaa – to do)	22	0.9	1.42	2.2	4.53	0.5	0.64	1.14	2.24
जताना (jataanaa – to express)	4	0.7	2.45	5.93	9.09	0.25	0.39	0.62	1.19

Time taken for verbs by lexicographers (examples)

Results : time taken for different POS categories

Time taken for different POS categories for skilled (A-C) and unskilled (D-F) lexicographers

Ontological statistics (verbs)

	Average of Time	No. of
Ontology	Taken	words
घटनासूचक (Event)	1.870816444	11
अनैच्छिक क्रिया (Verbs of Non-volition)	2.59201	1
अवस्थासूचक क्रिया(Verb of State)	4.403871355	77
शारीरिक कार्यसूचक bodily action	4.97281795	40
कर्मसूचक क्रियां (Verb of Action)	5.376058091	11
प्रेरणार्थक क्रिया (causative verb)	5.635743	5
संप्रेषणसूचक (Communication)	5.895843818	11
अधिकारसूचक (Possession)	6.00231725	9
परिवर्तनसूचक (Change)	6.517663706	17
विनाशसूचक (Destruction)	8.7992645	3
होना क्रिया (Verb of Occur)	12.06406657	7
भौतिक अवस्थासूचक (Physical State)	13.4773335	2
निरंतरतासूचक क्रिया (Verbs of Continuity)	17.896006	2
कार्यसूचक (Act)	20.2321495	2
मानसिक अवस्थासूचक (Mental State)	74.698983	1
Grand Total	5.896812948	199

Discussions

Cognitive sub-processes for Sense Annotation

• Three stages: Hypothesis building, clue-word searching and gloss matching

Skilled v/s unskilled lexicographers

- Unskilled $T_{gloss} >> T_{clue}$
- Skilled $T_{gloss} \sim T_{clue, ;}$ latch on to the POS quickly

Maximum annotation time for verbs

- High degree of polysemy
- Senses are fine-grained
- In some cases the hypothesis does not match the candidate senses

Adverbs and Adjectives

- Annotation time comparable to nouns
- Adjective and adverbs' proximity to the noun helps

Conclusions

✓ Sense annotation process can be divided into 3 stages: Hypothesis building (T_{hypo}), Clue-word searching (T_{clue}) and gloss matching (T_{gloss})

✓ The theory can be verified by analyzing the gaze patterns

✓ Skilled lexicographers annotate the words faster

✓ have knowledge about the senses of a word (significantly reducing the time T_{gloss})

✓ Verbs take the highest time among the POS categories given the high degree of polysemy and lack of exact senses

✓ Adverbs and adjectives are easier to annotate given their position near a verb or a noun

✓ Automating the process of identifying the clue-words from the gaze patterns can lead to building a rich *discrimination-net*

References

E. Agirre, O.L. De Lacalle, A. Soroa, and I. Fakultatea. 2009. Knowledge-based wsd on specific domains: performing better than generic supervised wsd. Proceedigns of IJCAI, pages 1501–1506. Arindam Chatterjee, Salil Joshi, Pushpak Bhattacharyya, Diptesh Kanojia, and Akhlesh Meena. 2012. A study of the sense annotation process: Man v/s machine. In Proceedings of 6th International Conference on Global Wordnets, January. G. De Melo, C.F. Baker, N. Ide, R.J. Passonneau, and C. Fellbaum. 2012. Empirical comparisons of masc word sense annotations. In Proceedings of the 8th international conference on language resources and evaluation (LREC12). Istanbul.

D. Drieghe, A. Pollatsek, A. Staub, and K. Rayner. 2008. *The word grouping hypothesis and eye movements during reading*. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(6):1552.

Mitesh M. Khapra, Salil Joshi, and Pushpak Bhattacharyya. 2011. *It takes two to tango: A bilingual unsupervised approach for estimating sense distributions using expectation maximization.* In Proceedings of 5th International Joint Conference on Natural Language Processing, pages 695–704, Chiang Mai, Thailand, November.

R.J. Passonneau, A. Salleb-Aouissi, V. Bhardwaj, and N. Ide. 2010. *Word sense annotation of polysemous words by multiple annotators*. Proceedings of LREC-7, Valleta, Malta.

S.P. Ponzetto and R. Navigli. 2010. *Knowledge-rich word sense disambiguation rivaling supervised systems*. In Proceedings of the 48th annual meeting of the association for computational linguistics, pages 1522–1531.

S. Vainio, J. Hy"on"a, and A. Pajunen. 2009. *Lexical predictability exerts robust effects on fixation duration, but not on initial landing position during reading*. Experimental psychology, 56(1):66.

Thank You!

Backup slides

Eye-tracking

Saccades

Fixations